Discontinuities, Generalized Solutions, and (Dis)agreement in Opinion Dynamics

  • F. Ceragioli
  • P. FrascaEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 475)


This chapter is devoted to the mathematical analysis of some continuous-time dynamical systems defined by ordinary differential equations with discontinuous right-hand side, which arise as models of opinion dynamics in social networks. Discontinuities originate because of specific communication constraints, namely, quantization or bounded confidence. Solutions of these systems may or may not converge to a state of agreement, where all components of the state space are equal. After presenting three models of interest, we elaborate on the properties of their solutions in terms of existence, completeness, and convergence.


  1. 1.
    Abelson, R.P.: Mathematical models in social psychology. Adv. Exp. Soc. Psychol. 3, 1–54 (1967)CrossRefGoogle Scholar
  2. 2.
    Acemoğlu, D., Como, G., Fagnani, F., Ozdaglar, A.: Opinion fluctuations and disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58(4), 935–946 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aubin, J.P., Cellina, A.: Differential Inclusions, Grundlehren der Mathematischen Wissenschaften, vol. 264. Springer, Berlin (1984)Google Scholar
  5. 5.
    Aydoğdu, A., Caponigro, M., McQuade, S., Piccoli, B., Pouradier Duteil, N., Rossi, F., Trélat, E.: Interaction Network, State Space, and Control in Social Dynamics. Springer, Berlin (2017). Scholar
  6. 6.
    Bacciotti, A.: Some remarks on generalized solutions of discontinuous differential equations. Int. J. Pure Appl. Math. 10(3), 257–266 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: Existence and uniqueness of solutions for a continuous-time opinion dynamics model with state-dependent connectivity (2009).
  8. 8.
    Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM J. Control Optim. 48(8), 5214–5240 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Canuto, C., Fagnani, F., Tilli, P.: An Eulerian approach to the analysis of Krause’s consensus models. SIAM J. Control Optim. 50(1), 243–265 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Carli, R., Fagnani, F., Speranzon, A., Zampieri, S.: Communication constraints in the average consensus problem. Automatica 44(3), 671–684 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)CrossRefGoogle Scholar
  12. 12.
    Ceragioli, F.: Discontinuous ordinary differential equations and stabilization. Ph.D. thesis, Università di Firenze (2000)Google Scholar
  13. 13.
    Ceragioli, F.: Finite valued feedback laws and piecewise classical solutions. Nonlinear Anal. Theory Methods Appl. 65(5), 984–998 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ceragioli, F., Frasca, P.: Continuous and discontinuous opinion dynamics with bounded confidence. Nonlinear Anal. Real World Appl. 13(3), 1239–1251 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ceragioli, F., Frasca, P.: Continuous-time consensus dynamics with quantized all-to-all communication. In: European Control Conference, pp. 1120–1125. Linz, Austria (2015)Google Scholar
  16. 16.
    Ceragioli, F., Frasca, P.: Consensus and disagreement: the role of quantized behaviours in opinion dynamics. SIAM Journal on Control and Optimization (2018). To appear. arXiv:1607.01482
  17. 17.
    Ceragioli, F., De Persis, C., Frasca, P.: Discontinuities and hysteresis in quantized average consensus. Automatica 47(9), 1916–1928 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ceragioli, F., Lindmark, G., Veibäck, C., Wahlström, N., Lindfors, M., Altafini, C.: A bounded confidence model that preserves the signs of the opinions. In: European Control Conference 2016, pp. 543–548. Aalborg, Denmark (2016)Google Scholar
  19. 19.
    Chazelle, B., Wang, C.: Inertial Hegselmann-Krause systems. IEEE Trans. Autom. Control 62(8), 3905–3913 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chowdhury, N.R., Morarescu, I.C., Martin, S., Srikant, S.: Continuous opinions and discrete actions in social networks: a multi-agent system approach. In: IEEE Conference on Decision and Control, pp. 1739–1744. Las Vegas, NV, USA (2016)Google Scholar
  21. 21.
    Cortés, J.: Discontinuous dynamical systems - a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Syst. Mag. 28(3), 36–73 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3(1–4), 87–98 (2000)CrossRefGoogle Scholar
  23. 23.
    Fagnani, F., Frasca, P.: Introduction to Averaging Dynamics over Networks. Lecture Notes in Control and Information Sciences. Springer, Berlin (2017)zbMATHGoogle Scholar
  24. 24.
    Filippov, A.: Differential Equations with Discontinuous Righthandside. Kluwer, Berlin (1988)CrossRefGoogle Scholar
  25. 25.
    Frasca, P., Ravazzi, C., Tempo, R., Ishii, H.: Gossips and prejudices: Ergodic randomized dynamics in social networks. In: IFAC Workshop on Estimation and Control of Networked Systems, pp. 212–219. Koblenz, Germany (2013)CrossRefGoogle Scholar
  26. 26.
    Frasca, P., Tarbouriech, S., Zaccarian, L.: A hybrid model of opinion dynamics with limited confidence. In: IFAC Symposium on Nonlinear Control Systems. Monterey, CA, USA (2016)CrossRefGoogle Scholar
  27. 27.
    Friedkin, N.E.: A Structural Theory of Social Influence. Cambridge University Press, Cambridge (2006)Google Scholar
  28. 28.
    Friedkin, N.E.: The problem of social control and coordination of complex systems in sociology: a look at the community cleavage problem. IEEE Control Syst. 35(3), 40–51 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Friedkin, N.E., Johnsen, E.C.: Social influence networks and opinion change. In: Lawler, E.J., Macy, M.W. (eds.) Advances in Group Processes, vol. 16, pp. 1–29. JAI Press (1999)Google Scholar
  30. 30.
    Friedkin, N.E., Johnsen, E.C.: Social Influence Network Theory: A Sociological Examination of Small Group Dynamics. Cambridge University Press, Cambridge (2011)Google Scholar
  31. 31.
    Galam, S.: Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”. Phys. A: Stat. Mech. Appl. 333(Supplement C), 453–460 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Galam, S.: Sociophysics: a physicist’s modeling of psycho-political phenomena. Springer Science & Business Media (2012)Google Scholar
  33. 33.
    Hájek, O.: Discontinuous differential equations I. J. Differ. Equ. 32, 149–170 (1979)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3), 1–33 (2002)Google Scholar
  35. 35.
    Jabin, P.E., Motsch, S.: Clustering and asymptotic behavior in opinion formation. J. Differ. Equ. 257(11), 4165–4187 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  37. 37.
    Martins, A.C.R.: Continuous opinions and discrete actions in opinion dynamics problems. Int. J. Mod. Phys. C 19(04), 617–624 (2008)CrossRefGoogle Scholar
  38. 38.
    Mirtabatabaei, A., Bullo, F.: Opinion dynamics in heterogeneous networks: convergence conjectures and theorems. SIAM J. Control Optim. 50(5), 2763–2785 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(2), 028–701 (2003)Google Scholar
  40. 40.
    Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Nedic, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: On distributed averaging algorithms and quantization effects. IEEE Trans. Autom. Control 54(11), 2506–2517 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Parsegov, S.E., Proskurnikov, A.V., Tempo, R., Friedkin, N.E.: Novel multidimensional models of opinion dynamics in social networks. IEEE Trans. Autom. Control 62(5), 2270–2285 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Proskurnikov, A.V., Tempo, R.: A tutorial on modeling and analysis of dynamic social networks. Part I. Annu. Rev. Control 43, 65–79 (2017)CrossRefGoogle Scholar
  44. 44.
    Pucci, A.: Traiettorie di campi di vettori discontinui. Rendiconti dell’Istituto Matematico dell’Università degli Studi di Trieste 8, 84–93 (1976)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Ravazzi, C., Frasca, P., Tempo, R., Ishii, H.: Ergodic randomized algorithms and dynamics over networks. IEEE Trans. Control Netw. Syst. 2(1), 78–87 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Shi, G., Proutiere, A., Johansson, M., Baras, J.S., Johansson, K.H.: The evolution of beliefs over signed social networks. Oper. Res. 64(3), 585–604 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Tangredi, D., Iervolino, R., Vasca, F.: Consensus stability in the Hegselmann–Krause model with coopetition and cooperosity. In: IFAC World Congress, pp. 12,426–12,431. Toulouse, France (2017)CrossRefGoogle Scholar
  48. 48.
    Urbig, D.: Attitude dynamics with limited verbalisation capabilities. J. Artif. Soc. Soc. Simul. 6(1), 1–23 (2003)Google Scholar
  49. 49.
    Wang, C., Li, Q., Weinan, E., Chazelle, B.: Noisy Hegselmann-Krause systems: phase transition and the 2r-conjecture. J. Stat. Phys. 166(5), 1209–1225 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Wei, J., Yi, X., Sandberg, H., Johansson, K.: Nonlinear consensus protocols with applications to quantized systems. In: IFAC World Congress, pp. 16,010–16,015. Toulouse, France (2017)Google Scholar
  51. 51.
    Yang, Y., Dimarogonas, D.V., Hu, X.: Opinion consensus of modified Hegselmann-Krause models. Automatica 50(2), 622–627 (2014)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhang, J., Hong, Y.: Opinion evolution analysis for short-range and long-range Deffuant-Weisbuch models. Phys. A 392(21), 5289–5297 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA- LabGrenobleFrance

Personalised recommendations