Advertisement

Pathogenesis, Histopathology, and Classification

  • Salvador Pastor-Idoate
  • Salvatore Di Lauro
  • José Carlos López
  • José Carlos Pastor
Chapter

Abstract

Proliferative vitreoretinopathy, or PVR, is a term adopted in 1983 for describing a complication occurring after some retinal detachments (RD) [1]. PVR develops in 5–10% of RD, and although it can occur spontaneously, before surgery, it is commonest after it [2]. Pathogenesis, in the original description, was focused on the formation of membranes in both surfaces of the retina, but more recently, the existence of intraretinal changes have been added as the more severe form of PVR [3].

References

  1. 1.
    The Retina Society Terminology Committee. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology. 1983;90(2):121–5. PubMed PMID: 6856248.CrossRefGoogle Scholar
  2. 2.
    Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res. 2016;51:125–55. PubMed PMID: 26209346.CrossRefGoogle Scholar
  3. 3.
    Pastor JC, Mendez MC, de la Fuente MA, Coco RM, Garcia-Arumi J, Rodriguez de la Rua E, et al. Intraretinal immunohistochemistry findings in proliferative vitreoretinopathy with retinal shortening. Ophthalmic Res. 2006;38(4):193–200. PubMed PMID: 16679807.CrossRefGoogle Scholar
  4. 4.
    de Souza CF, Kalloniatis M, Polkinghorne PJ, McGhee CN, Acosta ML. Functional and anatomical remodeling in human retinal detachment. Exp Eye Res. 2012;97(1):73–89. PubMed PMID: 22406310.CrossRefGoogle Scholar
  5. 5.
    Rodriguez de la Rua E, Pastor JC, Aragon J, Mayo-Iscar A, Martinez V, Garcia-Arumi J, et al. Interaction between surgical procedure for repairing retinal detachment and clinical risk factors for proliferative vitreoretinopathy. Curr Eye Res. 2005;30(2):147–53. PubMed PMID: 15814473.CrossRefGoogle Scholar
  6. 6.
    Rojas J, Fernandez I, Pastor JC, Garcia-Gutierrez MT, Sanabria RM, Brion M, et al. Development of predictive models of proliferative vitreoretinopathy based on genetic variables: the Retina 4 project. Invest Ophthalmol Vis Sci. 2009;50(5):2384–90. PubMed PMID: 19098314.CrossRefGoogle Scholar
  7. 7.
    Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J, Fernandez I, Garcia-Gutierrez MT, Ruiz-Moreno JM, et al. The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: the Retina 4 Project. Ophthalmology. 2013;120(3):623–8. PubMed PMID: 23207172.CrossRefGoogle Scholar
  8. 8.
    Sanabria Ruiz-Colmenares MR, Pastor Jimeno JC, Garrote Adrados JA, Telleria Orriols JJ, Yugueros Fernandez MI. Cytokine gene polymorphisms in retinal detachment patients with and without proliferative vitreoretinopathy: a preliminary study. Acta Ophthalmol Scand. 2006;84(3):309–13. PubMed PMID: 16704689.CrossRefGoogle Scholar
  9. 9.
    Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, et al. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res. 2013;37:114–40. PubMed PMID: 23994436. Pubmed Central PMCID: PMC3871865.CrossRefGoogle Scholar
  10. 10.
    Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K, Okada Y, et al. Fibrotic disorders in the eye: targets of gene therapy. Prog Retin Eye Res. 2008;27(2):177–96. PubMed PMID: 18243038.CrossRefGoogle Scholar
  11. 11.
    Pastor JC, de la Rua ER, Martin F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res. 2002;21(1):127–44. PubMed PMID: 11906814.CrossRefGoogle Scholar
  12. 12.
    Luna G, Keeley PW, Reese BE, Linberg KA, Lewis GP, Fisher SK. Astrocyte structural reactivity and plasticity in models of retinal detachment. Exp Eye Res. 2016;150:4–21. PubMed PMID: 27060374. Pubmed Central PMCID: PMC5031520.CrossRefGoogle Scholar
  13. 13.
    Di Lauro S, Kadhim MR, Charteris DG, Pastor JC. Classifications for proliferative vitreoretinopathy (PVR): an analysis of their use in publications over the last 15 years. J Ophthalmol. 2016;2016:7807596. PubMed PMID: 27429798. Pubmed Central PMCID: PMC4939352.CrossRefGoogle Scholar
  14. 14.
    Chen CL, Chen YH, Tai MC, Liang CM, Lu DW, Chen JT. Resveratrol inhibits transforming growth factor-beta2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. Drug Des Devel Ther. 2017;11:163–73. PubMed PMID: 28138219. Pubmed Central PMCID: PMC5241127.CrossRefGoogle Scholar
  15. 15.
    Banerjee PJ, Quartilho A, Bunce C, Xing W, Zvobgo TM, Harris N, et al. Slow-release dexamethasone in proliferative vitreoretinopathy: a prospective, randomized controlled clinical trial. Ophthalmology. 2017;124(6):757–67. PubMed PMID: 28237428CrossRefGoogle Scholar
  16. 16.
    Zhao XY, Xia S, Wang EQ, Chen YX. Efficacy of intravitreal injection of bevacizumab in vitrectomy for patients with proliferative vitreoretinopathy retinal detachment: a meta-analysis of prospective studies. Retina (Philadelphia, Pa). 2017;38(3):462–70. PubMed PMID: 28272285.CrossRefGoogle Scholar
  17. 17.
    Fernandez-Bueno I, Fernandez-Sanchez L, Gayoso MJ, Garcia-Gutierrez MT, Pastor JC, Cuenca N. Time course modifications in organotypic culture of human neuroretina. Exp Eye Res. 2012;104:26–38. PubMed PMID: 23022403.CrossRefGoogle Scholar
  18. 18.
    Di Lauro S, Rodriguez-Crespo D, Gayoso MJ, Garcia-Gutierrez MT, Pastor JC, Srivastava GK, et al. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis. 2016;22:243–53. PubMed PMID: 27081295. Pubmed Central PMCID: PMC4812504.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Rodriguez-Crespo D, Di Lauro S, Singh AK, Garcia-Gutierrez MT, Garrosa M, Pastor JC, et al. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 2014;358(3):705–16. PubMed PMID: 25213807.CrossRefGoogle Scholar
  20. 20.
    Zacks DN, Han Y, Zeng Y, Swaroop A. Activation of signaling pathways and stress-response genes in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci. 2006;47(4):1691–5. PubMed PMID: 16565410.CrossRefGoogle Scholar
  21. 21.
    Murakami Y, Miller JW, Vavvas DG. RIP kinase-mediated necrosis as an alternative mechanisms of photoreceptor death. Oncotarget. 2011;2(6):497–509. PubMed PMID: 21670490. Pubmed Central PMCID: PMC3248194.CrossRefGoogle Scholar
  22. 22.
    Garweg JG, Tappeiner C, Halberstadt M. Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol. 2013;58(4):321–9. PubMed PMID: 23642514.CrossRefGoogle Scholar
  23. 23.
    Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH. Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci. 2003;44(1):416–25. PubMed PMID: 12506104.CrossRefGoogle Scholar
  24. 24.
    Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90. PubMed PMID: 14692684.CrossRefGoogle Scholar
  25. 25.
    Geller SF, Lewis GP, Anderson DH, Fisher SK. Use of the MIB-1 antibody for detecting proliferating cells in the retina. Invest Ophthalmol Vis Sci. 1995;36(3):737–44. PubMed PMID: 7890504.PubMedGoogle Scholar
  26. 26.
    Lewis GP, Charteris DG, Sethi CS, Leitner WP, Linberg KA, Fisher SK. The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment. Invest Ophthalmol Vis Sci. 2002;43(7):2412–20. PubMed PMID: 12091445.PubMedGoogle Scholar
  27. 27.
    Campochiaro PA. Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol (Chicago, Ill: 1960). 1997;115(2):237–41. PubMed PMID: 9046259.CrossRefGoogle Scholar
  28. 28.
    Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA. The onset of pigment epithelial proliferation after retinal detachment. Invest Ophthalmol Vis Sci. 1981;21(1 Pt 1):10–6. PubMed PMID: 7251293.PubMedGoogle Scholar
  29. 29.
    Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014;123:107–14. PubMed PMID: 23880527.CrossRefGoogle Scholar
  30. 30.
    Tamiya S, Kaplan HJ. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res. 2016;142:26–31. PubMed PMID: 26675400.CrossRefGoogle Scholar
  31. 31.
    Wickham L, Charteris DG. Glial cell changes of the human retina in proliferative vitreoretinopathy. Dev Ophthalmol. 2009;44:37–45. PubMed PMID: 19494651.CrossRefGoogle Scholar
  32. 32.
    Di Lauro S, Castrejon M, Fernandez I, Rojas J, Coco RM, Sanabria MR, et al. Loss of visual acuity after successful surgery for macula-on rhegmatogenous retinal detachment in a prospective multicentre study. J Ophthalmol. 2015;2015:821864. PubMed PMID: 26640704. Pubmed Central PMCID: PMC4660023.CrossRefGoogle Scholar
  33. 33.
    Martin F, Pastor JC, De La Rua ER, Mayo-Iscar A, Garcia-Arumi J, Martinez V, et al. Proliferative vitreoretinopathy: cytologic findings in vitreous samples. Ophthalmic Res. 2003;35(4):232–8. PubMed PMID: 12815199.CrossRefGoogle Scholar
  34. 34.
    Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J, Fernandez I, Garcia-Gutierrez MT, Ruiz-Moreno JM, et al. The T309G MDM2 gene polymorphism is a novel risk factor for proliferative vitreoretinopathy. PLoS One. 2013;8(12):e82283. PubMed PMID: 24349246. Pubmed Central PMCID: PMC3857251.CrossRefGoogle Scholar
  35. 35.
    Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J, Fernandez I, Garcia-Gutierrez MT, Ruiz-Moreno JM, et al. BAX and BCL-2 polymorphisms, as predictors of proliferative vitreoretinopathy development in patients suffering retinal detachment: the Retina 4 project. Acta Ophthalmol. 2015;93(7):e541–9. PubMed PMID: 25991504.CrossRefGoogle Scholar
  36. 36.
    Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J, Gonzalez-Buendia L, Delgado-Tirado S, Lopez JC, et al. Functional characterization of rs2229094 (T>C) polymorphism in the tumor necrosis factor locus and lymphotoxin alpha expression in human retina: the Retina 4 project. Clin Ophthalmol (Auckland, NZ). 2017;11:973–81. PubMed PMID: 28579748. Pubmed Central PMCID: PMC5449105.CrossRefGoogle Scholar
  37. 37.
    Rouberol F, Chiquet C. Proliferative vitreoretinopathy: pathophysiology and clinical diagnosis. Journal Francais D'ophtalmologie. 2014;37(7):557–65. PubMed PMID: 24997864. Proliferation vitreo-retinienne : physiopathologie et diagnostic clinique. fre.CrossRefGoogle Scholar
  38. 38.
    Afrashi F, Akkin C, Egrilmez S, Erakgun T, Mentes J. Anatomic outcome of scleral buckling surgery in primary rhegmatogenous retinal detachment. Int Ophthalmol. 2005;26(3):77–81. PubMed PMID: 16957875.CrossRefGoogle Scholar
  39. 39.
    Lean JS, Stern WH, Irvine AR, Azen SP. Classification of proliferative vitreoretinopathy used in the silicone study. The Silicone Study Group. Ophthalmology. 1989;96(6):765–71. PubMed PMID: 2662099.CrossRefGoogle Scholar
  40. 40.
    Machemer R, Aaberg TM, Freeman HM, Irvine AR, Lean JS, Michels RM. An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol. 1991;112(2):159–65. PubMed PMID: 1867299.CrossRefGoogle Scholar
  41. 41.
    Lai MM, Ruby AJ, Sarrafizadeh R, Urban KE, Hassan TS, Drenser KA, et al. Repair of primary rhegmatogenous retinal detachment using 25-gauge transconjunctival sutureless vitrectomy. Retina (Philadelphia, Pa). 2008;28(5):729–34. PubMed PMID: 18463517.CrossRefGoogle Scholar
  42. 42.
    Oliveira LB, Reis PA. Silicone oil tamponade in 23-gauge transconjunctival sutureless vitrectomy. Retina (Philadelphia, Pa). 2007;27(8):1054–8. PubMed PMID: 18040244.CrossRefGoogle Scholar
  43. 43.
    Pastor JC. Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 1998;43(1):3–18. PubMed PMID: 9716190.CrossRefGoogle Scholar
  44. 44.
    Sadaka A, Giuliari GP. Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol (Auckland, NZ). 2012;6:1325–33. PubMed PMID: 22942638. Pubmed Central PMCID: PMC3429288.Google Scholar
  45. 45.
    Pastor JC, Rodriguez de la Rua E, Martin F, Mayo-Iscar A, de la Fuente MA, Coco R, et al. Retinal shortening: the most severe form of proliferative vitreoretinopathy (PVR). Archivos de la Sociedad Espanola de Oftalmologia. 2003;78(12):653–7. PubMed PMID: 14689321. Acortamiento retiniano: la forma mas grave de la vitreorretinopatia proliferante (VRP). spa.PubMedGoogle Scholar
  46. 46.
    Toygar O, Riemann CD. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron. Eye (Lond). 2016;30(1):23–30. PubMed PMID: 26656086. Pubmed Central PMCID: PMC4709554.CrossRefGoogle Scholar
  47. 47.
    Junker B, Maier M, Agostini H, Hattenbach LO, Pielen A, Framme C. Intraoperative optical coherence tomography in retinal detachment. Ophthalmologe. 2016;113(8):663–7. PubMed PMID: 27378449. Intraoperative optische Koharenztomographie bei Ablatio retinae. ger.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Salvador Pastor-Idoate
    • 1
    • 2
  • Salvatore Di Lauro
    • 1
    • 2
  • José Carlos López
    • 1
    • 3
  • José Carlos Pastor
    • 1
    • 2
  1. 1.IOBA (Eye Institute) Retina GroupUniversity of ValladolidValladolidSpain
  2. 2.Department of OphthalmologyHospital Clinico UniversitarioValladolidSpain
  3. 3.Department of PathologyHospital Clinico UniversitarioValladolidSpain

Personalised recommendations