The Wonderful World of Global Random Oracles

  • Jan Camenisch
  • Manu Drijvers
  • Tommaso Gagliardoni
  • Anja Lehmann
  • Gregory Neven
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10820)

Abstract

The random-oracle model by Bellare and Rogaway (CCS’93) is an indispensable tool for the security analysis of practical cryptographic protocols. However, the traditional random-oracle model fails to guarantee security when a protocol is composed with arbitrary protocols that use the same random oracle. Canetti, Jain, and Scafuro (CCS’14) put forth a global but non-programmable random oracle in the Generalized UC framework and showed that some basic cryptographic primitives with composable security can be efficiently realized in their model. Because their random-oracle functionality is non-programmable, there are many practical protocols that have no hope of being proved secure using it. In this paper, we study alternative definitions of a global random oracle and, perhaps surprisingly, show that these allow one to prove GUC-secure existing, very practical realizations of a number of essential cryptographic primitives including public-key encryption, non-committing encryption, commitments, Schnorr signatures, and hash-and-invert signatures. Some of our results hold generically for any suitable scheme proven secure in the traditional ROM, some hold for specific constructions only. Our results include many highly practical protocols, for example, the folklore commitment scheme \(\mathcal {H}(m\Vert r)\) (where m is a message and r is the random opening information) which is far more efficient than the construction of Canetti et al.

Notes

Acknowledgements

We thank Ran Canetti, Alessandra Scafuro, and the anonymous reviewers for their valuable comments. This work was supported by the ERC under grant PERCY (#321310) and by the EU under CHIST-ERA project USE-IT.

References

  1. 1.
    Ananth, P., Bhaskar, R.: Non observability in the random oracle model. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 86–103. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41227-1_5CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055718CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS 93Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0053428Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_34Google Scholar
  6. 6.
    Bhattacharyya, R., Mukherjee, P.: Non-adaptive programmability of random oracle. Theor. Comput. Sci. 592, 97–114 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal composition with responsive environments. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 807–840. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_27CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: UC-secure non-interactive public-key encryption. In: IEEE CSF 2017 (2017)Google Scholar
  9. 9.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)Google Scholar
  10. 10.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001 (2001)Google Scholar
  11. 11.
    Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW 2004 (2004)Google Scholar
  12. 12.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_4CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_2CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: ACM STOC 1998 (1998)Google Scholar
  15. 15.
    Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: ACM CCS 2014 (2014)Google Scholar
  16. 16.
    Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_14CrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commitments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_29CrossRefGoogle Scholar
  18. 18.
    Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_18CrossRefGoogle Scholar
  19. 19.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_8CrossRefGoogle Scholar
  22. 22.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRefMATHGoogle Scholar
  23. 23.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.IBM Research – ZurichRüschlikonSwitzerland
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations