Advertisement

Numerical Models for Operational Ocean Observing

  • Jorge E. Corredor
Chapter

Abstract

Ocean general circulation models (OGCM) mathematically simulate ocean water mass movements making use of the hydrodynamic equations adhering to the conservation of mass, and energy through simplifying assumptions that allow operational algorithms. Models are built upon grids and computations are performed at grid nodes and propagated through the grid at predetermined time steps. Local coastal circulation models, addressing a smaller area, can implement denser grids providing greater detail. These however are commonly embedded or nested within large-scale OGCMs reducing computational demand by providing boundary conditions between the models. Operational assimilation of instrumental data constrains model drift, extending the fidelity of model forecasts. Lagrangian tracking of virtual particles released into or upon the water surface provides guidance for spill tracking and search and rescue operations. Spectral ocean wave models determine energy density across the wave spectrum allowing forecasts of wave heights, parameterized as significant or maximum wave height, wave period, and wave direction. Accurate coastal circulation and wave modeling requires detailed coastline and bottom topography databases as well as fine-grained model wind fields. Chemical models are being used to track and forecast ocean acidification and biological models are being tuned for prediction of harmful algal bloom occurrences.

Keywords

General circulation models Data assimilation Structured grids Unstructured grids Coastal models Wave models Lagrangian tracking Chemical models Biological models 

References

  1. Anselmi C, Canals M, Morell J, Gonzalez J, Capella J, Mercado A. Development of an operational nearshore wave forecast system for Puerto Rico and the U.S. Virgin Islands. J Coast Res. 2012;28(5):1049–56.CrossRefGoogle Scholar
  2. Barrick D, Fernandez V, Ferrer MI, Whelan C, Breivik Ø. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dyn. 2012;62:725–40.  https://doi.org/10.1007/s10236-012-0521-0.CrossRefGoogle Scholar
  3. Beegle-Krause CJ. General NOAA oil modeling environment (GNOME): a new spill trajectory model. IOSC 2001 proceedings, Tampa, FL, March 26–29, 2001, vol. 2. St Louis: Mira Digital Publishing, Inc.;2001. pp. 865–71.CrossRefGoogle Scholar
  4. Benitez J, Mercado A. Storm surge modeling in Puerto Rico in support of emergency response, risk assessment, coastal planning and climate change analysis. 2015. http://coastalhazards.uprm.edu/downloads/Storm%20Surge%20Modeling%20in%20Puerto%20Rico%20in%20Support%20of%20Emergency%20Response-V10.pdf. Accessed 1/19/2018.
  5. Blumberg AF, Georgas N, Yin L, Herrington TO, Orton PM. Street-scale modeling of storm surge inundation along the New Jersey, Hudson River Waterfront. J Atmos Ocean Technol. 2015;32:1486–97.CrossRefGoogle Scholar
  6. Booij N, Ris RC, Holthuijsen LH. A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res. 1999;104(C4):7649–66.CrossRefGoogle Scholar
  7. Chen C, Liu H, Beardsley RC. An unstructured, finite volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol. 2003;20:159–86.CrossRefGoogle Scholar
  8. Chen C, Beardsley RC, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography. 2006;19(1):78–89. https://doi.org/10.5670/oceanog.2006.92.CrossRefGoogle Scholar
  9. Chen C, Huang H, Beardsley RC, Liu H, Xu Q, Cowles G. A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. J Geophys Res. 2007;112:C03018. https://doi.org/10.1029/2006JC003485.
  10. Chen C, Beardsley RC, Luettich RA, Westerink JJ, Wang H, Perrie W, Toulany B. Extratropical storm inundation testbed: Intermodel comparisons in Scituate, Massachusetts J Geophys Res Oceans. 2013;118(10):5054–5073, https://doi.org/10.1002/jgrc.20397.Google Scholar
  11. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. Regional ocean data assimilation. Ann Rev Mar Sci. 2015;7:21–42. https://doi.org/10.1146/annurev-marine-010814-015821. Epub 2014 Aug 6.CrossRefGoogle Scholar
  12. Falter JL, Lowe RJ, Zhang Z, McCulloch M. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS One. 2013;8(1):e53303. https://doi.org/10.1371/journal.pone.0053303.CrossRefGoogle Scholar
  13. Gledhill DK, Wanninkhof R, Millero FJ, Eakin M. Ocean acidification of the greater Caribbean region 1996–2006. J Geophys Res. 2007;113. https://doi.org/10.1029/2007JC004629. https://doi.org/10.1029/2007JC004629.
  14. Griffies S, Treguier AM. Ocean circulation models and modeling. In: Fundamentals of ocean climate modelling at global and regional scales. Trieste: International Centre for Theoretical Physics; 2013. p. 2512–5. p. 57. http://indico.ictp.it/event/a12235/material/0/4.pdf.Google Scholar
  15. He R, McGillicuddy DJ Jr, Keafer BA, Anderson D. Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling. J Geophys Res. 2008;113:C07040. https://doi.org/10.1029/2007JC004602.
  16. IOC, SCOR and IAPSO. The international thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties. Intergovernmental oceanographic commission, manuals and guides no. 5. Paris: UNESCO (English); 2010. pp. 196.Google Scholar
  17. Luettich E Jr, Wright LD, Nichols CR, Baltes R, Firedrichs MAM, Kurapov A, van der Westerhausen A, Fennel K, Howlett E. A test bed for coastal and ocean modelling. EOS. 2017;98(11):24–9.Google Scholar
  18. Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Monismith SG, Koseff JR. Spectral wave dissipation over a barrier reef. J Geophys Res. 2005;110:C04001. https://doi.org/10.1029/2004JC002711.
  19. Mellor GLM, Donelan A, Oeya LY. Surface wave model for coupling with numerical ocean circulation models. J Atmos Ocean Tech. 2008;25:1785–807. https://doi.org/10.1175/2008JTECHO573.1.CrossRefGoogle Scholar
  20. Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov DV, Chao YY, Chen HS, Gerald V. Development and Implementation of Wind-Generated Ocean Surface Wave Models at NCEP. Weather Forecast. 2002;17:311–33. https://doi.org/10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2.CrossRefGoogle Scholar
  21. Williams PD. A proposed modification to the Robert–Asselin time filter. Mon Weather Rev. 2009;137(8):2538–46. SSN: 0027-0644; eISSN: 1520-049.CrossRefGoogle Scholar
  22. Xie D-m, Zou Q-p, Cannon JW. Application of SWAN/ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot’s Day storm. Water Sci Eng. 2016;9(1):33–41.CrossRefGoogle Scholar
  23. Zhang Y, Baptista AM. SELFE: a semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 2008;21(3–4):71–96.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge E. Corredor
    • 1
  1. 1.Department of Marine Sciences (retired)University of Puerto RicoMayagüezPuerto Rico

Personalised recommendations