Zero Viscosity Boundary Effect Limit and Turbulence

  • Claude BardosEmail author
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)


This contribution is based on a theorem of Kato which relates for time dependent problems the appearance of turbulence with the anomalous energy dissipation, giving for the Cauchy problem an avatar of a basic idea of the statistical theory of turbulence. Some variant of this theorem are given and then it is shown how this point of view is in full agreement with several issues of fluid mechanic ranging from Prandtl’s problem to Kutta-Jukowsky’s equations.



Warm thanks to the organizers of the International Workshop on Applied and Computational Mathematics, Houston, February 2016 for their invitation to give a talk and to propose an article in the present volume, giving me an opportunity to congratulate Olivier Pironneau for his 70th birthday and to express my gratitude for his everlasting friendship and support.


  1. 1.
    Asano A (1991) Zero-viscosity limit of the incompressible Navier-Stokes equations. In: Fourth workshop on mathematical aspects of fluid and plasma dynamics. KyotoGoogle Scholar
  2. 2.
    Bardos C, Nguyen TN (2016) Remarks on the inviscid limit for the compressible flows. In: Radulescu D, Sequeira A, Solonnikov VA (eds) Recent advances in partial differential equations and applications, volume 666 of Contemp. Math. Providence, RI. AMS, pp 55–67Google Scholar
  3. 3.
    Bardos C, Titi ES (2013) Mathematics and turbulence: where do we stand? J Turbul 14(3):42–76MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bardos C, Titi ES, Wiedemann E (2012) The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. CR Math Acad Sci Paris 350(15–16):757–760MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bardos K Jr, Sekelikhidi L, Videmann E (2014) On the absence of uniqueness for the Euler equations: the effect of the boundary. Uspekhi Mat Nauk 69(2(416)):3–22. Translation in Russian Math Surv 69(2):189–207Google Scholar
  6. 6.
    Buckmaster T, De Lellis C, Székelyhidi L Jr (2016) Dissipative Euler flows with Onsager-critical spatial regularityGoogle Scholar
  7. 7.
    Cheskidov A, Constantin P, Friedlander S, Shvydkoy R (2008) Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6):1233–1252MathSciNetCrossRefGoogle Scholar
  8. 8.
    Constantin P, Weinan E, Titi ES (1994) Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm Math Phys 165(1):207–209MathSciNetCrossRefGoogle Scholar
  9. 9.
    Constantin P, Elgindi T, Ignatova M, Vicol V (2017) Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields. SIAM  J  Math  Anal 49(3):1932–1946Google Scholar
  10. 10.
    Constantin P, Kukavica I, Vicol V (2015) On the inviscid limit of the Navier-Stokes equations. Proc Amer Math Soc 143(7):3075–3090MathSciNetCrossRefGoogle Scholar
  11. 11.
    De Lellis C, Székelyhidi L Jr (2009) The Euler equations as a differential inclusion. Ann Math (2) 170(3):1417–1436Google Scholar
  12. 12.
    Frisch U (1995) Turbulence. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    Gerard-Varet D, Masmoudi N (2015) Well-posedness for the Prandtl system without analyticity or monotonicity. Ann Sci Éc Norm Supér (4) 48(6):1273–1325, 2015Google Scholar
  14. 14.
    Kato T (1984) Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on nonlinear partial differential equations (Berkeley, CA, 1983), volume 2 of Math Sci Res Inst Publ. Springer, New YorkGoogle Scholar
  15. 15.
    Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, LondonGoogle Scholar
  16. 16.
    Lebeau G (2002) Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim Calc Var 8:801–825MathSciNetCrossRefGoogle Scholar
  17. 17.
    Marchioro C, Pulvirenti M (1994) Mathematical theory of incompressible nonviscous fluids, vol 96 of Applied Mathematical Sciences. Springer, New YorkGoogle Scholar
  18. 18.
    Mohammadi B, Pironneau O (1994) Analysis of the \(k\)-epsilon turbulence model. Wiley, ChichesterGoogle Scholar
  19. 19.
    Onsager L (1949) Statistical hydrodynamics. Nuovo Cimento (9) 6(2):279–287Google Scholar
  20. 20.
    Periaux J (1975) Three dimensional analysis of compressible potential flows with the finite element method. Int J Numer Methods Eng 9(4):775–831CrossRefGoogle Scholar
  21. 21.
    Prandtl L (1904) Uber flüssigkeits-bewegung bei sehr kleiner reibung. Actes du 3ème Congrès international des Mathématiciens (Heidelberg). Teubner, Leipzig, pp 484–491Google Scholar
  22. 22.
    Sammartino M, Caflisch RE (1998) Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys 192(2):433–461Google Scholar
  23. 23.
    Scheffer V (1993) An inviscid flow with compact support in space-time. J Geom Anal 3(4):343–401MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shnirelman A (1997) On the nonuniqueness of weak solution of the Euler equation. Comm Pure Appl Math 50(12):1261–1286MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shvydkoy R Private communicationGoogle Scholar
  26. 26.
    Stewartson K (1974) Multistructured boundary layers on flat plates and related bodies. Adv Appl Mech 14:145–239CrossRefGoogle Scholar
  27. 27.
    Wu S (2002) Recent progress in mathematical analysis of vortex sheets. In: Proceedings of the international congress of mathematicians, vol III. Beijing, Higher Ed. Press, pp 233–242Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie (Paris VI), France and Wolfgang Pauli Institute ViennaParisAustria

Personalised recommendations