Advertisement

On Some Weighted Stokes Problems: Applications on Smagorinsky Models

  • Jacques RappazEmail author
  • Jonathan Rochat
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)

Abstract

In this paper we study existence and uniqueness of weak solutions for some non-linear weighted Stokes problems using convex analysis. The characterization of these equations is the viscosity, which depends on the strain rate of the velocity field and in some cases is related with a weight being the distance to the boundary of the domain. Such non-linear relations can be seen as a first approach of mixing-length eddy viscosity from turbulent modeling. A well known model is von Karman’s on which the viscosity depends on the square of the distance to the boundary of the domain. Numerical experiments conclude the work and show properties from the theory.

Keywords

Stokes equations Weighted Sobolev spaces Finite element method 

Mathematical Subject Classification

46E35 76F55 65N05 

Notes

Acknowledgements

The authors would like to thank Rio-Tinto Alcan Company for their financial support and Agnieska Kalamaskya for her input on Korn’s Inequalities.

References

  1. 1.
    Aimar H, Carena M, Durán R, Toschi M (2014) Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math Hungar 143(1):119–137MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baranger J, Najib K (1990) Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau. Numer Math 58(1):35–49MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brezis H (1983) Analyse fonctionnelle: Théorie et applications. Masson, PariszbMATHGoogle Scholar
  4. 4.
    Brown RC (1998) Some embeddings of weighted Sobolev spaces on finite measure and quasibounded domains. J Inequal Appl 2(4):325–356MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cavalheiro AC (2008) Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations. Complex Var Elliptic Equ 53(2):185–194MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cavalheiro AC (2008) Weighted Sobolev spaces and degenerate elliptic equations. Bol Soc Parana Mat (3) 26(1–2):117–132MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cavalheiro AC (2013) Existence results for Dirichlet problems with degenerated p-Laplacian. Opuscula Math 33(3):439–453MathSciNetCrossRefGoogle Scholar
  8. 8.
    Colinge J, Rappaz J (1999) A strongly nonlinear problem arising in glaciology. M2AN Math Model Numer Anal 33(2):395–406MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dacorogna B (2004) Introduction to the calculus of variations. Imperial College Press, LondonCrossRefGoogle Scholar
  10. 10.
    Drábek P, Kufner A, Nicolosi F (1997) Quasilinear elliptic equations with degenerations and singularities. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  11. 11.
    Durán RG, García FL (2010) Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann Acad Sci Fenn Math 35(2):421–438MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Jouvet G (2010) Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers. PhD thesis, Ecole Polytechnique Fédérale de Lausanne. Thèse No 4677Google Scholar
  14. 14.
    Kałamajska A (1994) Coercive inequalities on weighted Sobolev spaces. Colloq Math 66(2):309–318MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kondrat’ev VA, Oleinik OA (1988) Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Uspekhi Mat Nauk 43(5):55–98MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kufner A (1983) Weighted Sobolev spaces. Elsevier, PariszbMATHGoogle Scholar
  17. 17.
    Opic B, Gurka P (1989) Continuous and compact imbeddings of weighted Sobolev spaces. Czechoslovak Math J 39(1):78–94MathSciNetzbMATHGoogle Scholar
  18. 18.
    Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer, BerlinzbMATHGoogle Scholar
  20. 20.
    Sandri D (1993) Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél Math Anal Numér 27(2):131–155MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations