Advertisement

Melanoma pp 515-524 | Cite as

Immuno-Oncolytic Virotherapy for Melanoma

  • Helene Woyczesczyk
  • Karim Essani
Chapter

Abstract

Oncolytic virotherapy is a targeted immunotherapeutic approach to induce tumor cell lysis in vivo, with efficacy in a wide range of cancers, including melanoma. Viruses are carefully selected based on their ability to demonstrate selective tumor cell replication, and viral genomic modifications are used to enhance such replication and create a heightened immune response. Current use of oncolytic viruses (OVs) in melanoma ranges from discovery in the experimental phase to proof of efficacy in clinical trials. With the 2015 approval of Talimogene laherparepvec for the treatment of advanced melanoma, we have added yet another tool to effectively treat those with locally unresectable or in-transit disease. Recently, combination therapy trials with OVs and immune checkpoint inhibitors have shown to have some very promising results in patients with advanced, often metastatic, melanoma. This chapter includes an overview of the history of and making of OVs as well as a detailed summary of current clinical trials in melanoma patients. With new experimental data on oncolytic virotherapy published in ever-increasing numbers, the future of OVs for the treatment of melanoma seems to hold promise as a major component of treatment for melanoma.

Keywords

Melanoma Oncolytic virus Oncolytic virotherapy Talimogene laherparepvec Immunotherapy Combination therapy Immune checkpoint inhibitor 

Abbreviations

AE

     Adverse event

BSL

     Biosafety level

CD

     Cluster of differentiation

CRAds

    Conditionally replicative adenoviruses

CTLA

   Cytotoxic T-lymphocyte antigen

DC

     Dendritic cell

DR

     Durable response

FDA

     FOOD and Drug Administration

GM-CSF

   Granulocyte monocyte colony-stimulating factor

HMW-MAA

 High molecular weight tumor-associated antigen

HSV

     Herpes simplex virus

IFN

     Interferon

IL

      Interleukin

irPFS

    Immune-related progression free survival

IT

      Intratumoral

MAA

    Melanoma-associated antigen

MHC

    Major histocompatibility complex

MMP

    Matrix metalloprotease

MV

     Measles virus

NARA

    Neutralizing anti-reovirus antibodies

NDV

    Newcastle disease virus

NK

    Natural killer

OPTiM

 Oncovex (GM-CSF) Pivotal Trial in Melanoma

ORR

  Overall response rate

OV

    Oncolytic virus

PD

    Programmed death receptor

Pfu

    Plaque forming unit

PPE

   Personal protective equipment

PPR

   Progression prior to response

RECST

 Response evaluation criteria in solid tumors

TAA

  Tumor-associated antigen

TGF

  Transforming growth factor

TNF

  Tumor necrosis factor

TPV

  Tanapox virus

Tregs

   Regulatory T-cells

T-vec

   Talimogene laherparepvec

VSV

   Vesicular stomatitis virus

VV

    Vaccinia virus

Wt

     Wild type

Notes

Acknowledgements

We thank Dr. John Jellies, Dr. Cecil McIntire, and Susan McIntire for editorial comments.

References

  1. 1.
    Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther. 2004;11:643–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Kelly E, Russell S. History of Oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15:651–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Martuza R, Malick A, Markert J, Ruffner K, Coen D. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Peters C, Rabkin S. Designing herpes viruses as oncolytics. Mol Ther Oncolytics. 2015;2:15010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with III c and IV melanoma. Ann Surg Oncol. 2010;17:718–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107:1373–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mastrangelo M, Maguire H, Eisenlohr L, Laughlin C, Monken C, McCue P, Kovatich A, Lattime E. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6:409–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Kee D, McArthur G. Immunotherapy of melanoma. Eur J Surg Oncol. 2017;43:594–603.CrossRefPubMedGoogle Scholar
  9. 9.
    Chan W, Rahman M, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine. 2013;31:4252–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nettelbeck D, Rivera A, Balagué C, Alemany R, Curiel D. Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res. 2002;62:4663–70.PubMedGoogle Scholar
  11. 11.
    Garg H, Suri P, Gupta J, Talwar G, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016;23(16):49.  https://doi.org/10.1186/s12935-016-0326-1.CrossRefGoogle Scholar
  12. 12.
    Grigg C, Blake Z, Gartrell R, Sacher A, Taback B, Saenger Y. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol. 2016;43:638–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Conrad S, El-Aswad M, Kurban E, Jeng D, Tripp B, Nutting C, Eversole R, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. J Exp Clin Cancer Res. 2015;34:19.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Deng L, Fan J, Guo M, Huang B. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian tan strain Guang9. Cancer Lett. 2016;372:251–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Hoffmann P, Panigada M, Soprana E, et al. Pre-clinical development of HIvax: human survivin highly immunogenic vaccines. Hum Vaccin Immunother. 2015;11:1585–95.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Varghese S, Rabkin S. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–78.CrossRefPubMedGoogle Scholar
  17. 17.
    Hermiston T, Kuhn I. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther. 2002;9:1022–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang T, Suryawanshi Y, Woyczesczyk H, Essani K. Targeting melanoma with cancer-killing viruses. Open Virol J. 2017;11:28–47.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stephenson K, Barra N, Davies E, Ashkar A, Lichty B. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2011;19:238–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao H, Janke M, Fournier P, Schirrmacher V. Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Res. 2008;136:75–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Bai F, Niu Z, Tian H, Li S, Lv Z, Zhang T, Ren G, Li D. Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunol Lett. 2014;159:36–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Carew J, Kooby D, Halterman M, Kim S, Federoff H, Fong Y. A novel approach to cancer therapy using an Oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther. 2001;4:250–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang T, Kordish D, Suryawanshi Y, Eversole R, Kohler S, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing interleukin-2 is capable of inducing the regression of human melanoma tumors in the absence of T cells. Curr Cancer Drug Targets. 2017;17:9.CrossRefGoogle Scholar
  24. 24.
    Zheng J, Pei D, Mao L, Liu X, Sun F, Zhang B, Liu Y, Liu J, Li W, Han D. Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther. 2009;17:28–36.CrossRefGoogle Scholar
  25. 25.
    Lee Y, Kim J, Choi K, Choi I, Kim H, Cho S, Cho B, Yun C. Enhanced antitumor effect of Oncolytic adenovirus expressing Interleukin-12 and B7-1 in an Immunocompetent murine model. Clin Cancer Res. 2006;12:5859–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Andtbacka R, Kaufman H, Collichio F, et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.CrossRefGoogle Scholar
  27. 27.
    Liu B, Robinson M, Han Z, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10:292–303.CrossRefPubMedGoogle Scholar
  28. 28.
    Jeng D, Rahman MM, McFadden G, Essani K. Tumor necrosis factor inhibitors from poxviruses with an emphasis on Tanapoxvirus-2L protein. Recent Pat DNA Gene Seq. 2011;5:97–103.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaufman H, DeRaffele G, Mitcham J, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Investig. 2005;115:1903–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Bergmann M, Romirer I, Sachet M, et al. A genetically engineered influenza a virus with ras-dependent oncolytic properties. Cancer Res. 2001;61:8188–93.PubMedGoogle Scholar
  31. 31.
    Pulido J, Kottke T, Thompson J, et al. Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol. 2012;30:337–43.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martın F, Chowdhury S, Neil S, Phillipps N, Collins M. Envelope-targeted retrovirus vectors transduce melanoma Xenografts but not spleen or liver. Mol Ther. 2002;5:269–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Martin F, Neil S, Kupsch J, Maurice M, Cosset FL, Collins M. Retrovirus targeting by tropism restriction to melanoma cells. J Virol. 1999;73:6923–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hwang T, Moon A, Burke J, et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic Oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther. 2011;19:1913–192.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Park B, Hwang T, Liu T, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.CrossRefPubMedGoogle Scholar
  36. 36.
    Galanis E, Markovic S, Suman V, et al. Phase II trial of intravenous Administration of Reolysin® (Reovirus Serotype-3-Dearing strain) in patients with metastatic melanoma. Mol Ther. 2012;20:1998–2003.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Viralytics starts enrollment in phase II CAVATAK melanoma trial. 2011. M2 Pharma.Google Scholar
  38. 38.
    Primary endpoint achieved in CAVATAK phase 2 melanoma trial. 2013. PR Newswire. http://libproxy.library.wmich.edu/login?url=https://search.proquest.com/docview/1433277955?accountid=15099
  39. 39.
    Lichty B, Breitbach C, Stojdl D, Bell J. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–67.CrossRefPubMedGoogle Scholar
  40. 40.
    Andtbacka R, Ross M, Puzanov I, et al. Patterns of clinical response with Talimogene Laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol. 2016;23:4169–77.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rehman H, Silk A, Kane M, Kaufman H. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4:53.  https://doi.org/10.1186/s40425-016-0158-5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Herpes simplex virus. In: World Health Organization. 2017. http://www.who.int/mediacentre/factsheets/fs400/en/. Accessed 7 Sep 2017.
  43. 43.
    Harrington K, Michielin O, Malvehy J, Pezzani Grüter I, Grove L, Frauchiger A, Dummer R. A practical guide to the handling and administration of talimogene laherparepvec in Europe. Onco Targets Ther. 2017;10:3867–80.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Orloff M. Spotlight on talimogene laherparepvec for the treatment of melanoma lesions in the skin and lymph nodes. Oncolytic Virother. 2016;5:91–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gormley C, Agarwala SS. Intralesional combination shows early promise in melanoma. HEM/ONC Today. 2017;18(10):18–9. ProQuest. Web. 4 Sep. 2017Google Scholar
  46. 46.
    Puzanov I, Milhem M, Andtbacka R, Minor D, Hamid O, Li A, VanderWalde A, Kaufman H. Phase 1 results of a phase 1b/2, multicenter, open-label trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) vs ipi alone in previously untreated, unresected stage IIIB-IV melanoma. J Immunother Cancer. 2013;1:P84.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rajani K, Parrish C, Kottke T, et al. Combination therapy with Reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther. 2016;24:166–74.CrossRefPubMedGoogle Scholar
  48. 48.
    Webb E, Liu P, Baleeiro R, Lemoine N. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2017.  https://doi.org/10.7555/jbr.31.20160168.
  49. 49.
    Fellner C. Ipilimumab (Yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. PT. 2012;37:503–30.Google Scholar
  50. 50.
    Sosman J. Addice T-Vec to ipilimumab for advanced melanoma. NEJM J Watch. Oncology and Hematology. 2016.Google Scholar
  51. 51.
    Engeland C, Grossardt C, Veinalde R, et al. CTLA-4 and PD-L1 checkpoint blockade enhances Oncolytic measles virus therapy. Mol Ther. 2014;22:1949–59.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Christie JD, Byers ER, Essani K. Oncolytic Virotherapy: a brief overview. J Med Microb Diagn. 2016;5:e129.  https://doi.org/10.4172/2161-0703.1000e129.CrossRefGoogle Scholar
  53. 53.
    Suryawanshi Y, Zhang T, Essani K. Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol. 2017;34(3):43.  https://doi.org/10.1007/s12032-017-0899-0.CrossRefPubMedGoogle Scholar
  54. 54.
    Thomas C, Ehrhardt A, Kay M. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu Z, Gorman M, McKenzie L, Chai J, Hubert C, Prager B, Fernandez E, Richner J, Zhang R, Shan C, Wang X, Shi P, Diamond M, Rich J, Chheda M. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017;214(10):2843–57.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mahalingam D, Fountzilas C, Moseley J, Noronha N, Tran H, Chakrabarty R, Selvaggi G, Coffey M, Thompson B, Sarantopoulos J. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 2017;79:697–703.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Virology, Department of Biological SciencesWestern Michigan UniversityKalamazooUSA

Personalised recommendations