Advertisement

Advances in Bamboo Biotechnology: Present Status and Future Perspective

  • Pooja Thapa
  • Amita Bhattacharya
  • Priyanka Sood
  • Kiran Devi
  • Anil Sood
Chapter

Abstract

Bamboo, the most important natural and renewable resource of the world, has always been an integral part of the social and economic life of many Asian countries. Therefore, the annual demands for bamboos have already outcrossed the annual yields across the world. Increasing population pressure; indiscriminate exploitation by paper, pulp and fuel industry; and insufficient attempts to replenish and cultivate bamboos are further widening the gap between demand and supply. This has forced scientists to pay greater attention towards employment of advanced biotechnological tools for understanding, generating and improving bamboos. As a result, new insights into bamboos were gained through genomics, proteomics, nanotechnology and transgenic technology. The findings show the way for better utilization of improved bamboos in meeting the future needs of the world. The achievements highlighted in the present review pave the way for the betterment of bamboos for the next millennium.

Keywords

Bamboo Biotechnology Genomics Proteomics Micropropagation 

References

  1. Agnihotri RK, Nandi SK (2009) In vitro shoot cut: a high frequency multiplication and rooting method in the bamboo Dendrocalamus hamiltonii. Biotechnology 8:259–263CrossRefGoogle Scholar
  2. Ahmad S, Khushnooda RA, Jagdalec P, Tulliani JM, Ferroa GA (2015) High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater Des 76:223–229CrossRefGoogle Scholar
  3. Ahmad N, Sharma S, Singh VN, Shasmi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8CrossRefGoogle Scholar
  4. Alexander MP, Rao TC (1968) In vitroculture of bamboo embryos. Curr Sci 37:415Google Scholar
  5. Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 28(4):304–309PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ali AH, Nirmala C, Badal T, Sharma ML (2009) In vitro organogenesis and simultaneous formation of shoots and roots from callus in Dendrocalamus asper. In: 8 World Bamboo Congress, Bangkok, 16–19 September. Proceedings, vol 6. World Bamboo Organization, Plymouth, pp 32–41Google Scholar
  7. Anand M, Brar J, Sood A (2013) In vitro propagation of an edible bamboo Bambusa bambos and assessment of clonal fidelity through molecular markers. J Med Bioeng 2(4):257–261CrossRefGoogle Scholar
  8. Ansari SA, Kumar S, Palaniswamy K (1996) Peroxidase activity in relation to in vitro rhizogenesis and precocious flowering in bamboos. Curr Sci 71:358–359Google Scholar
  9. Arshad SM, Kumar A, Bhatnagar SK (2005) Micropropagation of Bambusa wamin through proliferation of mature nodal explant. J Biol Res 3:59–66Google Scholar
  10. Arya S, Kaur B, Arya ID (2009) Micropropagation of economically important bamboo Dendrocalamus hamiltonii through axillary bus and seed culture. In: 8 World Bamboo Congress, Bangkok, 16–19 September. Proceedings, vol 6. World Bamboo Organization, Plymouth, pp 122–130Google Scholar
  11. Arya ID, Kaur B, Arya S (2012) Rapid and mass propagation of economically important bamboo Dendrocalamus hamiltonii. Indian J Energy 1:11–16Google Scholar
  12. Arya ID, Satsangi S, Arya S (2001) Rapid micropropagation of edible bamboo Dendrocalamus asper. J Sustain For 14:103–114CrossRefGoogle Scholar
  13. Arya S, Satsangi R, Arya ID (2002) Rapid mass multiplication of edible bamboo Dendrocalamus asper. J Sustain For 14:103–109CrossRefGoogle Scholar
  14. Arya S, Satsangi R, Arya ID (2008a) Direct regeneration of shoots from immature inflorescences in Dendrocalamus asper (edible bamboo) leading to mass propagation. J Am Bamboo Soc 21:14–20Google Scholar
  15. Arya S, Satsangi R, Arya ID (2008b) Large scale plant propagation of edible bamboo Dendrocalamus asper through somatic embryogenesis. J Am Bamboo Soc 21:21–31Google Scholar
  16. Bag N, Chandra S, Palni LMS, Nandi SK (2000) Micropropagation of Devringal [Thamnocalamus spathiflorus (Trin.) Munro]- a temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci 156:125–135PubMedCrossRefGoogle Scholar
  17. Bag N, Palni LMS, Chandra S, Nandi SK (2012) Somatic embryogenesis in ‘maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr Sci 102(9):1279–1287Google Scholar
  18. Baldwin BS, Cirtain M, Horton DS, Ouellette J, Franklin SB, Preece JE (2009) Propagation methods for rivercane Arundinaria gigantea L. (Walter). Castanea 74(3):300–316CrossRefGoogle Scholar
  19. Banerjee M, Gantait S, Pramanik BR (2011) A two step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol Mol Biol Plants 17(4):387–393PubMedPubMedCentralCrossRefGoogle Scholar
  20. Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930CrossRefGoogle Scholar
  21. Bejoy M, Anish NP, Radhika BJ, Nai GM (2012) In vitro propagation of Ochlandra wightii (Munro) Fisch: an endemic reed of Southern Western Ghats India. Biotechnology 11(2):67–73CrossRefGoogle Scholar
  22. Bhandawat A, Singh G, Seth R, Singh P, Sharma RK (2017) Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci 7:2038PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bhattacharya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748CrossRefGoogle Scholar
  24. Bisht P, Pant M, Kant A (2010) In vitro propagation of Gigantochloa atroviolaceae Widjaja through nodal explants. J Am Sci 6:1019–1025Google Scholar
  25. Brar J, Anand M, Sood A (2013) In vitro seed germination of economically important edible bamboo Dendrocalamus membranaceus Munro. Indian J Exp Biol 51(1):88–96PubMedGoogle Scholar
  26. Cao YW, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123(32):7961–7962PubMedCrossRefGoogle Scholar
  27. Chambers SM, Heuch JHR, Pirrie A (1991) Micropropagation and in vitro flowering of bamboo Dendrocalamus hamiltonii Munro. Plant Cell Tissue Organ Cult 27:45–48CrossRefGoogle Scholar
  28. Das M, Pal A (2005) In vitro regeneration of Bambusa balcooa Roxb: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult 81:109–112CrossRefGoogle Scholar
  29. Das S, Saha M (2012) Preparation of carbon Nanosphere from bamboo and its use in water purification. Curr Trends Tech Sci 2(1):2279–0535Google Scholar
  30. David F (1984) The book of bamboo: a comprehensive guide to this remarkable plant, its uses, and its history. Sierra Club Books, San FranciscoGoogle Scholar
  31. Devi WS, Bengyella L, Sharma GJ (2012) In vitro seed germination and micropropagation of edible bamboo Dendrocalamus giganteus Munro using seeds. Biotechnology 11:74–80CrossRefGoogle Scholar
  32. Devi WS, Sharma GJ (2009) In vitro propagation of Arundinaria callosa Munroan edible bamboo from nodal explants of mature plants. Open Plant Sci J 3:35–39CrossRefGoogle Scholar
  33. Diab EEE, Mohamed SE (2008) In vitro morphogenesis and plant regeneration of bamboos (Oxytenanthera abyssinica a. Rich. Munro). Int J Sustain Crop Prod 3:72–79Google Scholar
  34. Douglas C, Halperin W, Gordon M, Nester E (1985) Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J Bacteriol 161:764–766Google Scholar
  35. Erkoc S (2006) Structural and electronic properties of bamboo-like carbon nanostructure. Phys E 31:62–66CrossRefGoogle Scholar
  36. Frame BR, Shou H, Chikwamba RK, Zhang ZI, Xiang CI, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z (2014) Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis. PLoS One 9(6):e98910PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gillis K, Gielis J, Peeters H, Dhooghe E, Oprins J (2007) Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboo. Plant Cell Tissue Organ Cult 91:115–123CrossRefGoogle Scholar
  39. Godbole S, Sood A, Thakur R, Sharma M, Ahuja PS (2002) Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Curr Sci 83:885–889Google Scholar
  40. Graves AE, Goldman SL, Banks SW, Graves ACF (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. J Bacteriol 170:2395–2400PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome: syntenic relationships to Rice and Sorghum. J Integr Plant Biol 52(11):1008–1015PubMedCrossRefPubMedCentralGoogle Scholar
  42. He XQ, Suzuki K, Kitamura S, Lin JX, Cui KM, Itoh T (2002) Towards understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol 43:186–195PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hu X, Reddy AS (1997) Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34:949–959Google Scholar
  44. Hu S, Zhou J, Cao Y, Lu X, Duan N, Ren P, Chen K (2011) In vitro callus induction and plant regeneration from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus (Keng et Keng f.) Chia et H. L. Fung. Afr J Biotechnol 10:3210–3215CrossRefGoogle Scholar
  45. Islam N, Rahman MM (2005) Micro-cloning in commercially important six bamboo species for mass propagation and at a large scale cultivation. Plant Tissue Cult Biotech 15:103–111Google Scholar
  46. Jimenez VM, Castillo J, Tavares E, Guevara E, Montiel M (2006) In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell Tissue Organ Cult 86:389–395CrossRefGoogle Scholar
  47. John CK, Nadgauda RS (1999) Review- In vitro-induced flowering in bamboos. In Vitro Cell Dev Biol Plant 35:309–315CrossRefGoogle Scholar
  48. Kahl G (1982) Molecular biology of wound healing: the conditioning phenomenon. In: Kahl G, Schell J (eds) Molecular biology of plant tumors. Academic Press, New York, pp 211–268CrossRefGoogle Scholar
  49. Kalia S, Kalia RK, Sharma SK (2004) In vitro regeneration of an indigenous bamboo (Bambusa nutans) from internode and leaf explant. J Bamboo Rattan 3:217–228CrossRefGoogle Scholar
  50. Kant A, Arya S, Arya ID (2009) Micropropagation protocol for Melocanna baccifera using nodal explants from mature clump. 8th World Bamboo Congress Proc 6:2–12Google Scholar
  51. Kapoor P, Rao IU (2006) In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var gigantea Bennet and Gaur by using growth regulators and sucrose. Plant Cell Tissue Organ Cult 85:211–217CrossRefGoogle Scholar
  52. Kaufmann K, Busch W (2013) Plant genomics: from weed to wheat. Genome Biol 14:308PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y (2015) In vitroflowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 15:1291–1306PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kaur D, Ogra RK, Bhattacharya A, Sood A (2012) Changes in sugar levels during slow growth of Dendrocalamus hamiltonii somatic embryos due to liquid paraffin overlay. In Vitro Cell Dev Biol Plant 48:120–126CrossRefGoogle Scholar
  55. Kaur D, Thapa P, Sharma M, Bhattacharya A, Sood A (2014) In vitro flowering- a system for tracking floral organ development in Dendrocalamus hamiltonii Nees et Arn ex Munro. Indian J Exp Biol 52:825–834PubMedPubMedCentralGoogle Scholar
  56. Khan HR, Burla S, Siri N, Lavanya P (2014) Effect of nutrient media and phytohormones on in vitro establishment of Bambusa balcooa. Roxb Int Lett of Nat Sci 17:1–11Google Scholar
  57. Komatsu YH, Piotto KDB, Brondani GE, Gonçalves AN, Almeid M (2011) In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. J For Res 22(2):209–215CrossRefGoogle Scholar
  58. Kulzer F, Orrit M (2004) Single-molecule optics. Annu Rev Phys Chem 55:585–611PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lee C, Chin T (1960) Comparative anatomical studies of some Chinese bamboos. Acta Bot Sin 9:76–95Google Scholar
  60. Li XB, Shupe TF, Peter GF, Hse CY, Eberhardt TL (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci 19:6Google Scholar
  61. Lin CS, Chen CT, Lin CC, Chang WC (2003) A method of inflorescence proliferation. Plant Cell Rep 21:838–843PubMedGoogle Scholar
  62. Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. Hortic Sci 42:1243–1246Google Scholar
  63. Lin CS, Liang CJ, Hsaio HW, Lin MJ, Chang WC (2007) In vitro flowering of green and albino Dendrocalamus latiflorus. New For 34:177–186CrossRefGoogle Scholar
  64. Lin CS, Lin CC, Chang WC (2004) Effect of thidiazuron on vegetative tissue derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76:75–82CrossRefGoogle Scholar
  65. Lobovikov M, Paudel S, Piazza M, Ren H, Wu J (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food and Agriculture Organization of the United Nations, Rome, pp 1–73Google Scholar
  66. Louis B, Waikhom SD, Goyaria S, Josea RC, Royc P, Talukdar NC (2015) First proteome study of sporadic flowering in bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) reveal the boom is associated with stress and mobile genetic elements. Gene 574:255–264PubMedCrossRefGoogle Scholar
  67. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850PubMedCrossRefGoogle Scholar
  68. Malehorn DE, Borgmeyer JR, Smith CE, Shah DM (1994) Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol 106:1471–1481PubMedPubMedCentralCrossRefGoogle Scholar
  69. Marulanda M, Gutiérrez L, Márquez M (2005) Micropropagación de Guadua angustifolia Kunt. Revista Colombiana de Biotecnología Vegetal 87(27):5–15Google Scholar
  70. Mehta R, Sharma V, Sood A, Sharma M, Sharma RK (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro derived plantlets of B. nutans wall., using AFLP markers. Eur J For Res 130:729–736CrossRefGoogle Scholar
  71. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609PubMedCrossRefGoogle Scholar
  72. Mishra Y, Patel PK, Yadav S, Shirin F, Ansari SA (2008) A micropropagation system for cloning of Bambusa tulda Roxb. Scientia Horticulturae 115:315–318CrossRefGoogle Scholar
  73. Mitin VV, Kochelap VA, Stroscio MA (eds) (2008) Introduction to nanoelectronics: materials for nanoelectronics. Cambridge University Press, Cambridge, pp 65–108Google Scholar
  74. Mudoi KD, Borthakur M (2009) In vitro micropropagation of Bambusa balcooa Roxb. Through nodal explants from field-grown culms and scope for upscaling. Curr Sci 96:962–966Google Scholar
  75. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557CrossRefGoogle Scholar
  76. Nadgauda RS, John CK, Parasharami VA, Joshi MS, Mascarenhas AF (1997) A comparison of in vitro with in vivo flowering in bamboo: Bambusa arundinacea. Plant Cell Tissue Organ Cult 48:181–188CrossRefGoogle Scholar
  77. Nadgauda RS, Parasharami VA, Mascarenhas AF (1990) Precocious flowering and seeding behaviour in tissue-cultured bamboos. Nature 344:335–336CrossRefGoogle Scholar
  78. Nadha HK, Rahul K, Sharma RK, Anand M, Sood A (2013) In vitro propagation of Dendrocalamus asper and testing the clonal fidelity using RAPD and ISSR markers. Int J Curr Res 5(8):2060–2067Google Scholar
  79. Nayak S, Hatwar B, Jain A (2010) Effect of Cytokinin and auxins on meristem culture of Bambusa arundinacea. Pharm Lett 2(1):408–414Google Scholar
  80. Ndiaye A, Diallo M, Niang D, Gassama-Dia YK (2006) In vitro regeneration of adult trees of Bambusa vulgaris. Afr J Biotechnol 5:1245–1248Google Scholar
  81. Negi D, Saxena S (2011) In vitro propagation of Bambusa nutans wall. ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5:35–43CrossRefGoogle Scholar
  82. Ogita S (2005) Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnol 22:119–125CrossRefGoogle Scholar
  83. Ogita S, Kashiwagi H, Kato Y (2008) In vitro node culture of seedlings in bamboo plant, Phyllostachys meyeri McClure. Plant Biotechnol 25:381–385CrossRefGoogle Scholar
  84. Ogita S, Kikuchi N, Nomura T, Kato Y (2011) A practical protocol for particle bombardment-mediated transformation of Phyllostachys bamboo suspension cells. Plant Biotechnol 28:43–50CrossRefGoogle Scholar
  85. Ojha A, Verma N, Kumar A (2009) In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments explants. Res Crops 10(2):430–436Google Scholar
  86. Pandey BN, Singh NB (2012) Micropropagation of Dendrocalamus strictus nees from mature nodal explants. J Appl Nat Sci 4(1):5–9CrossRefGoogle Scholar
  87. Peng Z, Lu T, Li L, Liu X, Gao Z, Hu T, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116PubMedPubMedCentralCrossRefGoogle Scholar
  88. Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q (2016) Biocompatible cellulose- based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64PubMedPubMedCentralCrossRefGoogle Scholar
  89. Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J (2013) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 8:e78944PubMedPubMedCentralCrossRefGoogle Scholar
  90. Qiao G, Yang H, Zhang L, Han X, Liu M, Jiang J, Jiang Y, Zhuo R (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell Dev Biol Plant 50(4):385–391.  https://doi.org/10.1007/s11627-013-9591-z CrossRefGoogle Scholar
  91. Raju RI, Roy SK (2016) Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. J Biol Sci 5(2):15–26Google Scholar
  92. Ramanayake SMSD, Meemaduma VN, Weerawardene TE (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Sci Hortic 110:109113CrossRefGoogle Scholar
  93. Ramanayake SMSD, Wanniarachchi WAVR, Tennakoon TMA (2001) Axillary shoot proliferation and in vitro flowering in an adult giant bamboo, Dendrocalamus giganteus Wall. Ex Munro. In Vitro Cell Dev Biol - Plant 37(5):667–671CrossRefGoogle Scholar
  94. Ramanayake SMSD, Wanniarachehi WAVR (2003) Organogenesis in callus derived from an adult giant bamboo (Dendrocalamus giganteus Wall ex Munro). Scientia Horticulturae 98:195–200CrossRefGoogle Scholar
  95. Rathore TS, Kabade U, Jagadish MR, Somashekar PV, Viswanath S (2009) Micropropagation and evaluation of growth performance of the selected industrially important bamboo species in southern India. In: Proceedings. 8th World Bamboo Congress, vol 6. World Bamboo Organization, Plymouth, pp 41–55Google Scholar
  96. Reddy GM (2006) Clonal propagation of bamboo (Dendrocalamus strictus). Curr Sci 91(11):1462–1464Google Scholar
  97. Roco MC, Williams RS, Alivasatos P (1999) Nanotechnology research direction: IWGN workshop report. Kluwer Academic Publishers, NorwellCrossRefGoogle Scholar
  98. Rout GR, Das P (1994) Somatic embryogenesis and in vitro flowering of 3 species of bamboo. Plant Cell Rep 13:683–686PubMedCrossRefGoogle Scholar
  99. Safiuddin M, Gonzalez M, Cao JW, Tighe SL (2014) State of-the-art report on use of nano-materials in concrete. Int J Pavement Eng 15:940–949CrossRefGoogle Scholar
  100. Saini H, Arya ID, Arya S, Sharma R (2016) In vitro Micropropagation of Himalayan weeping bamboo, Drepanostachyum falcatum. Am J Plant Sci 7:1317–1324Google Scholar
  101. Salam K (2008) Bamboo for economic prosperity and ecological security with special reference to Northeast India. CBTC, Guwahati. www.indianfolklore.org/journals/index.php/inshani/article/viewPDFInterstitial/409/353 Google Scholar
  102. Sanjaya Rathore TS, Ravishankar RV (2005) Micropropagation of P seudoxytenanthera stocksii Munro. In Vitro Cell Dev Biol-Plant 41:333–337CrossRefGoogle Scholar
  103. Scott N, Chan H (2002) Nanoscale science and engineering for agriculture and food system report. National Planning Workshop, Washington, DCGoogle Scholar
  104. Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19(4):229–244CrossRefGoogle Scholar
  105. Sharma P, Sarma KP (2013) In vitro propagation of Bambusa tulda: an important plant for better environment. J Environ Res Dev 7(3):1216–1223Google Scholar
  106. Sharma P, Sharma KP (2011) In vitro propagation of Bambusa balcooa for a better environment. International conference on advances in biotechnology and pharmaceutical sciences (ICABPS’2011) Bangkok Dec, pp 248–252Google Scholar
  107. Shirin F, Rana PK (2007) In vitro plantlet regeneration from nodal explants of field-grown culms in Bambusa glaucescens Willd. Plant Biotechnol Rep 1:141–114CrossRefGoogle Scholar
  108. Shroti RK, Upadhyay R, Niratka C, Singh M (2012) Micropropagation of Dandrocalamus asper through inter nodal segment. Bull Environ Pharmacol Life Sci 1(3):58–60Google Scholar
  109. Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012a) Micropropagation of Dendrocalamus asper {Schult. and Schult. F.} Backer ex K. Heyne: an exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228CrossRefGoogle Scholar
  110. Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012b) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17:9–21Google Scholar
  111. Singh M, Jaiswal U, Jaiswal VS (2000) Thidiazuron-induced in vitro flowering in Dendrocalamus strictus Nees. Curr Sci 79:1529–1530Google Scholar
  112. Singla R, Sonib S, Markand P, Avnesh K, Mahesh K, Patial V, Padwad YS, Yadava SK (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162PubMedCrossRefGoogle Scholar
  113. Sood P (2013) Development of genetic transformation system for Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Ph.D Thesis, Guru Nanak Dev University, AmritsarGoogle Scholar
  114. Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15CrossRefGoogle Scholar
  115. Sood A, Palni LMS, Sharma M, Chand G, Sharma OP (2002) Micropropagation of Dendrocalamus hamiltonii Munro (Maggar bamboo) using explants taken from seed-raised and field-tested plus plants. J Plant Biol 29:125–132Google Scholar
  116. Thatcher LF, Anderson JP, Singh KB (2005) Plant defence responses: what have we learnt from Arabidopsis? Funct Plant Biol 32:1–19CrossRefGoogle Scholar
  117. Thiruvengadam M, Rekha KT, Chung IM (2011) Rapid in vitro micropropagation of Bambusa oldhamii Munro. Philipp Agric Scientist 94:7–13Google Scholar
  118. Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) wild: a recalcitrant bamboo species. J Genet Eng Biotechnol 13(2):193–200CrossRefGoogle Scholar
  119. Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci World J 2014:345794CrossRefGoogle Scholar
  120. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 11:726PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wen GS, Zhang LY, Zhang RM, Cao ZH, Zhou GM, Huang H, Wong MH (2011) Temporal and spatial dynamics of carbon fixation by moso bamboo (Phyllostachys pubescens) in subtropical China. Bot Rev 77:271–277PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wu FS, Feng TY (1999) Delivery of plasmid DNA into intact plant cells by electroporation of plasmolyzed cells. Plant Cell Rep 18:381–386CrossRefGoogle Scholar
  123. Wysocki WP, Ruiz-Sanchez E, Yin Y, Duvall MR (2016) The floral transcriptomes of four bamboo species (Bambusoideae; Poaceae): support for common ancestry among woody bamboos. BMC Genomics 17:384PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yasin S, Liu L, Yao J (2013) Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. J Fiber Bio Eng Inform 6(1):77–84CrossRefGoogle Scholar
  125. Yasodha R, Kamala S, Kalaiarasi K (2010) Anatomical and biochemical changes associated with in vitro rhizogenesis in Dendrocalamus giganteus. Plant Biochem Biotechnol 19(2):217–222CrossRefGoogle Scholar
  126. Yasodha R, Kamala S, Kumar SPA, Kumar PD, Kalaiarasi K (2008) Effect of glucose on in vitro rooting of mature plants of Bambusa nutans. Sci Hortic 116:113–116CrossRefGoogle Scholar
  127. Yu HQ, Jiang ZH, Hse CY, Shupe TF (2008) Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). J Trop For Sci 20(4):258–263Google Scholar
  128. Yu Y, Tian G, Wang H, Fei B, Wang G (2011) Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung 65:113–119Google Scholar
  129. Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso bamboo. PLoS One 8(12):e81954PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zang QL, Zhou L, Fei ZG, Yang HY, Wang XQ, Lin XC (2016) Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. SpringerPlus 5:1799PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult 103:325–332CrossRefGoogle Scholar
  132. Zhang XM, Zhao L, Rabin ZL, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7(8):e42082PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zheng YS, Hong W, Qiu EF, Chen LG (1998) Hormone content and distribution in Phyllostachys heterocycla cv. Pubescens during period of shoot emergence. Scientia Silvae Sinicae 34:100–104Google Scholar
  134. Zhou X, Torabi MLJ, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074PubMedCrossRefGoogle Scholar
  135. Zhou M, Yang P, Gao P, Tang D (2001) Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Mol Biol Rep 29:224–231CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pooja Thapa
    • 1
  • Amita Bhattacharya
    • 1
  • Priyanka Sood
    • 1
  • Kiran Devi
    • 1
  • Anil Sood
    • 1
  1. 1.Division of BiotechnologyCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations