Advertisement

Spectroscopic Methods for the Identification of Sesquiterpene Lactones

  • Valeria P. Sülsen
  • Osvaldo J. Donadel
  • Cesar A. N. Catalán
Chapter

Abstract

The most widely used spectroscopic methods for the identification of sesquiterpene lactones are discussed. The most distinctive and characteristic signals in the UV, IR, MS, 1H-MNR and 13C-NMR spectra are discussed. In addition, some examples of the application of these techniques for the structure elucidation of some representative sesquiterpene lactones with different skeletal types are presented.

Keywords

UV CD IR MS 1H-NMR 13C-NMR 2D techniques 

References

  1. Abdullaev UA, Rashkes YV, Tarasov VA et al (1979) Mass spectra of some sesquiterpene lactones of the eudesmane series with a C1-OH group. Chem Nat Compd 15:28–32CrossRefGoogle Scholar
  2. Atta-Ur-Rahman, Shekhani MS, Perveen S et al (1989) 7-hydroxyfrullanolide, an antimicrobial sesquiterpene lactone from Sphaeranthus indicus Linn. J Chem Res S 13:68Google Scholar
  3. Bardón A, Cardona L, Catalán CAN et al (1996) 15-Norguaianolides and germacranolides from Mikania mendocina. Phytochemistry 41(3):845–849CrossRefGoogle Scholar
  4. Borges del Castillo J, Manresa-Ferrero MT, Rodriguez Luis F et al (1981) 13C NMR study of psilostachyinolides from some Ambrosia species. Magn Reson Chem 17(3):232–234Google Scholar
  5. Budesinsky M, Saman D (1995) Carbon 13NMR spectra of sesquiterpene lactones. In: Webb G (ed) , vol vol 30. Academic Press, London, pp 231–475Google Scholar
  6. Catalán CA, Cuenca M, Hernández LR et al (2003) cis,cis-Germacranolides and melampolides from Mikania thapsoides. J Nat Prod 66(7):949–953CrossRefPubMedGoogle Scholar
  7. Cha M-R, Choi YH, Choi C et al (2011) New guaiane sesquiterpene lactones from Ixeris dentata. Planta Med 77:380–382CrossRefPubMedGoogle Scholar
  8. Chaves JS, de Oliveira DCR (2003) Sesquiterpene lactones and other chemical constituents of Mikania hoehnei R. J Braz Chem Soc 14(5):734–737CrossRefGoogle Scholar
  9. Coronado-Aceves EW, Velázquez C, Robles-Zepeda RE et al (2016) Reynosin and santamarine: two sesquiterpene lactones from Ambrosia confertiflora with bactericidal activity against clinical strains of Mycobacterium tuberculosis. Pharm Biol 54(11):2623–2628CrossRefPubMedGoogle Scholar
  10. Cortes E, Romero MC, Romo J (1977) Espectrometria de masas de lactones sesquiterpénicas de la serie de los pseudoguaianolidos II. Rev Latinoamer Quim 8:168–171Google Scholar
  11. Cuenca MDR (1995) Ph.D. thesis, University of TucumánGoogle Scholar
  12. Cuenca MDR, Bardon A, Catalán CAN et al (1988) Sesquiterpene lactones from Mikania micrantha. J Nat Prod 51(3):625–626CrossRefGoogle Scholar
  13. Cuenca MDR, Borkosky S, Catalán CAN et al (1993) Sesquiterpene lactones of Mikania minima. Phytochemistry 32(6):1509–1513CrossRefGoogle Scholar
  14. de Heluani CS, de Lampasona MP, Catalan CAN et al (1989) Guaianolides, heliangolides and other constituents from Stevia alpina. Phytochemistry 28(7:1931–1935CrossRefGoogle Scholar
  15. Domínguez XA (1979) Métodos de investigación fitoquímica. Limusa, MéxicoGoogle Scholar
  16. Emani LR, Ravada SR, Garaga MR et al (2017) Four new sesquiterpenoids from Sphaeranthus indicus. Nat Prod Res 17:1–8Google Scholar
  17. Fischer NH, Oliver EJ, Fischer HD (1979) The biogenesis and chemistry of sesquiterpene lactones. In: Herz W, Grisebach H, Kirby GW (eds) Progress in chemistry of organic natural products, vol 38. Springer, New York, pp 47–390Google Scholar
  18. Gutierrez A, Oberti JC, Sosa V et al (1987) Melampolides from Mikania cordifolia. Phytochemistry 26(8):2315–2320CrossRefGoogle Scholar
  19. Ito K, Sakakibara Y, Haruna M (1982) Seven guaianolides from Eupatorium chinense. Phytochemistry 21(3):715–720CrossRefGoogle Scholar
  20. Jadhav RB, Sonawane KB, Deshpande NR et al (2007) Two new eudesmanolides from Sphaeranthus indicus (Linn). Indian J Chem 46B(121):379–381Google Scholar
  21. Joel DM, Chaudhuri SK, Plakhine D et al (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche Cumana. Phytochemistry 72:624–634CrossRefPubMedGoogle Scholar
  22. Kisiel W (1983) Two new guaianolides from Crepis capillaries. Polish J Chem 57:139–143Google Scholar
  23. Kisiel W, Michalska K (2001) Sesquiterpenoids and phenolics from Crepis conyzifolia. Z Naturforsch 56c:961–964CrossRefGoogle Scholar
  24. Krautmann M, de Riscala EC, Burgueño-Tapia E et al (2007) C-15-functionalized eudesmanolide from Mikania campanulata. J Nat Prod 70(7):1173–1179CrossRefPubMedGoogle Scholar
  25. Laurella LC, Cerny N, Bivona AE et al (2017) Sesquiterpene lactones from Mikania species display in vitro activity against Trypanosoma cruzi and Leishmania sp. PLoS Negl Trop Dis 11(9):e0005929. https://doi.org/10.1371/journal.pntd.0005929 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Martino R, Beer MF, Elso O et al (2015) Sesquiterpene lactones from Ambrosia spp. are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest. Toxicol In Vitro 29:1529–1536CrossRefPubMedGoogle Scholar
  27. Matsueda S (1972) Studies on sesquiterpenelactones. VII. Mass spectra of pseudoguaiane-sesquiterpenelactones. Yakugaku Zasshi 92(7):905–907CrossRefPubMedGoogle Scholar
  28. Nakanishi K (1962) Infrared absorption spectroscopy. Holden-Day, Inc., San Francisco and Nankodo Company Limited, TokyoGoogle Scholar
  29. Neves M, Morais R, Gafner S et al (1999) New sesquiterpene lactones from the Portuguese liverwort Targionia lorbeeriana. Phytochemistry 50:967–972CrossRefGoogle Scholar
  30. Plugar VN, Rashker YV, Saitbaeva IM et al (1987) Fragmentation of sesquiterpene lactones related to leucomisin. Chem Nat Compd 23:80–84CrossRefGoogle Scholar
  31. Rehman NU, Hussain H, Al-Riyami SA et al (2016) Lyciumaside and lyciumate: a new diacylglycoside and sesquiterpene lactone from Lycium shawii. Helv Chim Acta 99:1–4CrossRefGoogle Scholar
  32. Rufatto LC, Gower A, Schwambach J et al (2012) Genus Mikania: chemical composition and phytotherapeutical activity. Rev Bras Farmacogn 22(6):1384–1403CrossRefGoogle Scholar
  33. Rychlewska U, Kisiel W (1991) Structure of the naturally occurring sesquiterpene lactone 8-epiisolipidiol. Acta Crystallogr C 47:129–132CrossRefGoogle Scholar
  34. Shekhani MS, Shah PM, Yasmin A et al (1990) An immunostimulant sesquiterpene glycoside from Sphaeranthus indicus. Phytochemistry 29:2573–2576CrossRefGoogle Scholar
  35. Shekhani MS, Shah PM, Khan KM et al (1991) New eudesmanolides from Sphaeranthus indicus. J Nat Prod 54:882–885CrossRefGoogle Scholar
  36. Shi Z-R, Zhang X-Y, Zeng R-T et al (2016) Sesquiterpenoids from Ainsliaea spicata and their cytotoxic and NO production inhibitory activities. Phytochem Lett 18:87–94CrossRefGoogle Scholar
  37. Sosa VE, Oberti JC, Prasad JS et al (1984) Flavonoids and eupahakonenin B from Stevia satureiaefolia. Phytochemistry 23(7):1515–1516CrossRefGoogle Scholar
  38. Stefani R, Schorr K, Tureta JM et al (2006) Sesquiterpene lactones from Dimerostemma species (Asteraceae) and in vitro potential anti-inflammatory activities. Z Naturforsch C 61(9–10):647–652PubMedCrossRefGoogle Scholar
  39. Sülsen V (2009) Ph.D. thesis, University of Buenos AiresGoogle Scholar
  40. Sülsen V, Cazorla S, Frank F et al (2013) Natural terpenoids from Ambrosia species are active in vitro and in vivo against human pathogenic trypanosomatids. PLoS Negl Trop Dis 7(10):e2494CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsai L, Highet RJ, Herz W (1969) The mass spectra of pseudoguaianolides related to helenalin. J Org Chem 34(4):945–948CrossRefPubMedGoogle Scholar
  42. Yang YJ, Yao J, Jin XJ et al (2016) Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricate. Phytochemistry 124:86–98CrossRefPubMedGoogle Scholar
  43. Yoshioka H, Mabry J, Timmermann BN (1973) Sesquiterpene lactones: chemistry, NMR and plant distribution. University of Tokyo Press, TokyoGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valeria P. Sülsen
    • 1
    • 2
  • Osvaldo J. Donadel
    • 3
  • Cesar A. N. Catalán
    • 4
  1. 1.Universidad de Buenos Aires, Facultad de Farmacia y BioquímicaCátedra de FarmacognosiaBuenos AiresArgentina
  2. 2.CONICET – Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco – CONICET (IQUIMEFA)Buenos AiresArgentina
  3. 3.Instituto de Investigaciones en Tecnología Química (INTEQUI), Universidad Nacional de San LuisSan LuisArgentina
  4. 4.CONICET – Universidad Nacional de Tucumán, Instituto de Química del Noroeste – CONICET (INQUINOA)San Miguel de TucumánArgentina

Personalised recommendations