Advertisement

Chemistry of Sesquiterpene Lactones

  • Francis J. Barrios
Chapter

Abstract

Sesquiterpene lactones are a class of bioactive plant products that display an array of biological and pharmacological activities such as antimicrobial, cytotoxic, anti-inflammatory, antiviral, antibacterial, and antifungal. A vast amount of sesquiterpene molecular structures has been reported, and the largest numbers of these types of compounds can be isolated from the Asteraceae (formerly known as Compositae) family. An important feature of these sesquiterpene lactones is the presence of an α-methylene-γ-lactone moiety which can react with nucleophilic sulfhydryl groups present in enzymes, proteins, and glutathione. The differences in the activities found among sesquiterpene lactones are due to the number of alkylating elements, lipophilicity, and chemical environment. This chapter discusses some of the synthetic pathways and summarizes the chemical transformation and biological activities of these sesquiterpene lactones.

Keywords

Sesquiterpene lactones Synthesis Chemical transformation α-Methylene-γ-lactone Germacranolides Guaianolides 

References

  1. Adio AM (2009) Germacrenes A-E and related compounds: thermal, photochemical and acid induced transannular cyclizations. Tetrahedron 65:1533–1552CrossRefGoogle Scholar
  2. Andrews SP, Ball M, Wierschem F et al (2007) Total synthesis of five thapsigargins: guaianolide natural products exhibiting sub-nanomolar SERCA inhibition. Chemistry 13:5688–5712CrossRefPubMedGoogle Scholar
  3. Arantes FFP, Barbosa LCA, Alvarenga ES et al (2009) Synthesis and cytotoxic activity of alpha-santonin derivatives. Eur J Med Chem 44:3739–3745CrossRefPubMedGoogle Scholar
  4. Arantes FFP, Barbosa LCA, Maltha CRA et al (2010) Synthesis of novel alpha-santonin derivatives as potential cytotoxic agents. Eur J Med Chem 45:6045–6051CrossRefPubMedGoogle Scholar
  5. Azarken R, Guerra FM, Moreno Dorado J et al (2008) Substituent effects in the transannular cyclizations of germacranes. Synthesis of 6-epi-costunolide and five natural steiractinolides. Tetrahedron 64:10896–10905CrossRefGoogle Scholar
  6. Blazquez AG, Fernandez-Dolon M, Sanchez Vicente L et al (2013) Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem 21:4432–4441CrossRefPubMedGoogle Scholar
  7. Bulow N, Konig WA (2000) The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 55:141–168CrossRefPubMedGoogle Scholar
  8. Calas M, Cordina G, Bompart J et al (1997) Antimalarial activity of molecules interfering with Plasmodium falciparum phospholipid metabolism. Structure-activity relationship analysis. J Med Chem 40:3557–3566CrossRefPubMedGoogle Scholar
  9. Calas M, Ancelin ML, Cordina G et al (2000) Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: comparison between mono- and bisquaternary ammonium salts. J Med Chem 43:505–516CrossRefPubMedGoogle Scholar
  10. Chadwick J, Jones M, Chadwick AE et al (2010) Design, synthesis and antimalarial/anticancer evaluation of spermidine linked artemisinin conjugates designed to exploit polyamine transporters in Plasmodium falciparum and HL-60 cancer cell lines. Bioorg Med Chem 18:2586–2597CrossRefPubMedGoogle Scholar
  11. Chen LX, Zhu HJ, Wang R et al (2008) ent-labdane diterpenoid lactone stereoisomers from Andrographis paniculata. J Nat Prod 71:852–855CrossRefPubMedGoogle Scholar
  12. Chu H, Smith JM, Felding J et al (2017) Scalable synthesis of (−)-thapsigargin. ACS Central Sci 3:47–51CrossRefGoogle Scholar
  13. Cloete TT, Breytenbach JW, de Koch C et al (2012) Synthesis, antimalarial activity and cytotoxicity of 10-aminoethylether derivatives of artemisinin. Bioorg Med Chem 20:4701–4709CrossRefPubMedGoogle Scholar
  14. Duthaler U, Huwyler J, Rinaldi L et al (2012) Evaluation of the pharmacokinetic profile of artesunate, artemether and their metabolites in sheep naturally infected with Fasciola hepatica. Vet Parasitol 186:270–280CrossRefPubMedGoogle Scholar
  15. Efferth T, Kah S, Paulus K et al (2008a) Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells. Mol Cancer Ther 7:152–161CrossRefPubMedGoogle Scholar
  16. Efferth T, Romero MR, Wolf DG et al (2008b) The antiviral activities of artemisinin and artesunate. Clin Infec Dis 47:804–811CrossRefGoogle Scholar
  17. Foo K, Usui I, Gootz DC et al (2012) Scalable, enantioselective synthesis of germacrenes and related sesquiterpenes inspired by terpene cyclase phase logic. Angew Chem Int Ed 51:11491–11495CrossRefGoogle Scholar
  18. Fuchs S, Berl V, Lepoittevin JP et al (2007) A highly stereoselective divergent synthesis of bicyclic models of photoreactive sesquiterpene lactones. Eur J Org Chem:1145–1152CrossRefGoogle Scholar
  19. Ghantous A, Gali-Muhtasib H, Vuorela H et al (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15:668–678CrossRefPubMedGoogle Scholar
  20. Grillet F, Huang CF, Brummond KM et al (2011) An allenic Pauson-Khand approach to 6,12-guaianolides. Org Lett 13:6304–6307CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guzman ML, Li XJ, Corbett C et al (2005) Mechanisms controlling selective death of leukemia stem cells in response to parthenolide. Blood 106:141a–141aCrossRefGoogle Scholar
  22. Guzman ML, Rossi RM, Neelakantan S et al (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435CrossRefPubMedPubMedCentralGoogle Scholar
  23. Han CH, Barrios FJ, Riofsky MV et al (2009) Semisynthetic derivatives of sesquiterpene lactones by palladium-catalyzed arylation of the alpha-methylene-gamma-lactone substructure. J Org Chem 74:7176–7179CrossRefPubMedGoogle Scholar
  24. Hassane DC, Sen S, Minhajuddin M et al (2010) Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 116:5983–5990CrossRefPubMedGoogle Scholar
  25. Hirose T, Miyakoshi N, Mukai C et al (2008) Total synthesis of (+)-achalensolide based on the Rh(I)-catalyzed allenic Pauson-Khand-type reaction. J Org Chem 73:1061–1066CrossRefPubMedGoogle Scholar
  26. Hwang DR, Chang CW, Lien TW et al (2006) Synthesis and anti-viral activity of a series of sesquiterpene lactones and analogues in the subgenomic HCV replicon system. Bioorg Med Chem 14:83–91CrossRefPubMedGoogle Scholar
  27. Justicia J, de Cienfuegos LA, Estevez RE et al (2008) Ti-catalyzed transannular cyclization of epoxygermacrolides. Synthesis of antifungal (+)-tuberiferine and (+)-dehydrobrachylaenolide. Tetrahedron 64:11938–11943CrossRefGoogle Scholar
  28. Kalidindi S, Jeong WB, Schall A et al (2007) Enantioselective synthesis of arglabin. Angew Chem Int Ed 46:6361–6363CrossRefGoogle Scholar
  29. Khazir J, Singh PP, Reddy DM et al (2013) Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of alpha-santonin. Eur J Med Chem 63:279–289CrossRefPubMedGoogle Scholar
  30. Kitson RR, Millemaggi A, Taylor RJ et al (2009) The renaissance of alpha-methylene-gamma-butyrolactones: new synthetic approaches. Angew Chem Int Ed Engl 48:9426–9451CrossRefPubMedGoogle Scholar
  31. Krishna S, Uhlemann AC, Haynes RK et al (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updat 7:233–244CrossRefPubMedGoogle Scholar
  32. Kummer DA, Brenneman JB, Martin SF et al (2005) Application of a domino intramolecular enyne metathesis/cross metathesis reaction to the total synthesis of (+)-8-epi-xanthatin. Org Lett 7:4621–4623CrossRefPubMedGoogle Scholar
  33. Kwok BH, Koh BD, Ndubiusi MI et al (2001a) The sesquiterpene lactone parthenolide binds and inhibits IKK beta. Mol Biol Cell 12:271aGoogle Scholar
  34. Kwok BHB, Koh B, Ndubiusi MI et al (2001b) The anti-inflammatory natural product parthenolide from the medicinal herb feverfew directly binds to and inhibits I kappa B kinase. Chem Biol 8:759–766CrossRefPubMedGoogle Scholar
  35. Lone SH, Bhat KA (2015) Hemisynthesis of a naturally occurring clinically significant antitumor arglabin from ludartin. Tetrahedron Lett 56:1908–1910CrossRefGoogle Scholar
  36. Long J, Ding YH, Wang PP et al (2013) Protection-group-free semisyntheses of parthenolide and its cyclopropyl analogue. J Org Chem 78:10512–10518CrossRefPubMedGoogle Scholar
  37. Long J, Zhang SF, Wang PP et al (2014) Total syntheses of parthenolide and its analogues with macrocyclic stereocontrol. J Med Chem 57:7098–7112CrossRefPubMedGoogle Scholar
  38. Macias FA, Santana A, Yamahata A et al (2012) Facile preparation of bioactive seco-guaianolides and guaianolides from Artemisia gorgonum and evaluation of their phytotoxicity. J Nat Prod 75:1967–1973CrossRefPubMedGoogle Scholar
  39. Makiyi EF, Frade RFM, Lebl T et al (2009) Iso-seco-tanapartholides: isolation, synthesis and biological evaluation. European J Org Chem:5711–5715CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mang C, Jakupovic S, Schunk S et al (2006) Natural products in combinatorial chemistry: an andrographolide-based library. J Comb Chem 8:268–274CrossRefPubMedGoogle Scholar
  41. Marshall JA, Lebreton J, Dehoff BS et al (1987) Stereoselective total synthesis of aristolactone and epiaristolactone via [2,3] wittig ring contraction. J Org Chem 52:3883–3889CrossRefGoogle Scholar
  42. Merten J, Frohlich R, Metz P et al (2004) Enantioselective total synthesis of the highly oxygenated 1,10-seco-eudesmanolides eriolanin and eriolangin. Angew Chem Int Ed 43:5991–5994CrossRefGoogle Scholar
  43. Merten J, Hennig A, Schwab P et al (2006) A concise sultone route to highly oxygenated 1,10-seco-eudesmanolides – Enantioselective total synthesis of the antileukemic sesquiterpene lactones (−)-eriolanin and (−)-eriolangin. European J Org Chem 5:1144–1161CrossRefGoogle Scholar
  44. Mihelcic J, Moeller KD (2003) Anodic cyclization reactions: the total synthesis of alliacol A. J Am Chem Soc 125:36–37CrossRefPubMedGoogle Scholar
  45. Minnaard AJ, Wijnberg JBPA, de Groot A (1999) The synthesis of germacrane sesquiterpenes and related compounds. Tetrahedron 55:2115–2146CrossRefGoogle Scholar
  46. Modzelewska A, Sur S, Kumar SK et al (2005) Sesquiterpenes: natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 5:477–499CrossRefPubMedGoogle Scholar
  47. Nakamura T, Tsuboi K, Oshida M et al (2009) Total synthesis of (−)-diversifolin. Tetrahedron Lett 50:2835–2839CrossRefGoogle Scholar
  48. Nam NH (2006) Naturally occurring NF-kappa B inhibitors. Mini Rev Med Chem 6:945–951CrossRefPubMedGoogle Scholar
  49. Nasim S, Crooks PA (2008) Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett 18:3870–3873CrossRefPubMedGoogle Scholar
  50. Neelakantan S, Nasim S, Guzmán ML et al (2009) Aminoparthenolides as novel anti-leukemic agents: discovery of the NF-kappa B inhibitor, DMAPT (LC-1). Bioorg Med Chem Lett 19:4346–4349CrossRefPubMedGoogle Scholar
  51. Neukirch H, Kaneider NC, Wiedermann CJ et al (2003) Parthenolide and its photochemically synthesized 1(10)Z isomer: chemical reactivity and structure-activity relationship studies in human leucocyte chemotaxis. Bioorg Med Chem 11:1503–1510CrossRefPubMedGoogle Scholar
  52. Peese K (2010) New agents for the treatment of leukemia: discovery of DMAPT (LC-1). Drug Discov Today 15:322–322CrossRefGoogle Scholar
  53. Ploypradith P (2004) Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs. Acta Trop 89:329–342CrossRefPubMedGoogle Scholar
  54. Reynolds AJ, Scott AJ, Turner CI et al (2003) The intramolecular carboxyarylation approach to podophyllotoxin. J Am Chem Soc 125:12108–12109CrossRefPubMedGoogle Scholar
  55. Roboz GJ, Guzman M (2009) Acute myeloid leukemia stem cells: seek and destroy. Exp Rev Hematol 2:663–672CrossRefGoogle Scholar
  56. Shaikenov TE, Adekenov SM, Williams RM et al (2001) Arglabin-DMA, a plant derived sesquiterpene, inhibits farnesyltransferase. Oncol Rep 8:173–179PubMedGoogle Scholar
  57. Shibuya H, Ohashi K, Kawashima K et al (1986) Synthesis of costunolide, an antitumor germacranolide, from E,E-farnesol by use of a low-valent chromium reagent. Chem Lett 1:85–86CrossRefGoogle Scholar
  58. Siedle B, Garcia-Pineres AJ, Murillo R et al (2004) Quantitative structure – activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappa B. J Med Chem 47:6042–6054CrossRefPubMedGoogle Scholar
  59. Singh B, Srivastava JS, Khosa RL et al (2001) Individual and combined effects of berberine and santonin on spore germination of some fungi. Folia Microbiol 46:137–142CrossRefGoogle Scholar
  60. Srivastava SK, Abraham A, Bhat B et al (2006) Synthesis of 13-amino costunolide derivatives as anticancer agents. Bioorg Med Chem Lett 16:4195–4199CrossRefPubMedGoogle Scholar
  61. Sun CM, Syu WJ, Don MJ et al (2003) Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod 66:1175–1180CrossRefPubMedGoogle Scholar
  62. Vadaparthi PRR, Kumar CP, Kumar K et al (2015) Synthesis of costunolide derivatives by Pd-catalyzed Heck arylation and evaluation of their cytotoxic activities. Med Chem Res 24:2871–2878CrossRefGoogle Scholar
  63. Wen B, Hexum JK, Widen JC et al (2013) A redox economical synthesis of bioactive 6,12-guaianolides. Org Lett 15:2644–2647CrossRefPubMedPubMedCentralGoogle Scholar
  64. Woods JR, Mo HP, Bieberich AA et al (2011) Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as F-19 NMR probes in deuterium-free environments. J Med Chem 54:7934–7941CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yang ZJ, Ge WZ, Li QY et al (2015) Syntheses and biological evaluation of costunolide, parthenolide, and their fluorinated analogues. J Med Chem 58:7007–7020CrossRefPubMedGoogle Scholar
  66. Yeung S, Pongtavornpinyo W, Hastings IM et al (2004) Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71:179–186PubMedCrossRefGoogle Scholar
  67. Yokoe H, Yoshida M, Shishido K (2008) Total synthesis of (−)-xanthatin. Tetrahedron Lett 49:3504–3506CrossRefGoogle Scholar
  68. Zhai JD, Li DM, Long J et al (2012) Biomimetic semisynthesis of arglabin from parthenolide. J Org Chem 77:7103–7107CrossRefPubMedGoogle Scholar
  69. Zhang WH, Luo SJ, Fang F et al (2005) Total synthesis of absinthin. J Am Chem Soc 127:18–19CrossRefPubMedGoogle Scholar
  70. Zhang Q, Cai DF, Liu JH (2011) Matrix solid-phase dispersion extraction coupled with HPLC-diode array detection method for the analysis of sesquiterpene lactones in root of Saussurea lappa CB Clarke. J Chromatogr B Analyt Technol Biomed Life Sci 879:2809–2814CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and PhysicsBellarmine UniversityLouisvilleUSA

Personalised recommendations