Combining RAIT and Immune-Based Therapies to Overcome Resistance in Cancer?

  • Jean-Baptiste Gorin
  • Jérémie Ménager
  • Yannick Guilloux
  • Jean-François Chatal
  • Joëlle GaschetEmail author
  • Michel Chérel
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 18)


Radiation therapy has long been considered as immunosuppressive; therefore its impact on the immune system and other aspects which could be involved in raising efficient antitumor immune responses has been neglected. However, the recent demonstration of the immunogenic properties of ionizing radiation is rapidly modifying the radiation oncology field, and it also opens new and promising perspectives for the development and improvement of radioimmunotherapy. In this chapter, we first review the immunogenic properties of irradiation before discussing available evidence of the benefits of radiation therapy and immunotherapy combinations in the context of lymphoma.


Radioimmunotherapy Abscopal effect Immune response Immunogenic cell death Ionizing radiation 





Antibody-dependent cellular cytotoxicity


Antigen-presenting cells


Chimeric antigen receptor


Complement-dependent cytotoxicity


Carcinoembryonic antigen


Cytosine-phosphate-guanine motif


Complete response




Unconfirmed complete response


Damage-associated molecular pattern


Dendritic cells


Fms-related tyrosine kinase 3 ligand


Granulocyte-colony stimulating factor


Granulocyte-macrophage colony-stimulating factor




High mobility group box 1


Intercellular adhesion molecule 1




Immunoglobulin G




International unit


Lymphocyte function-associated antigen 3


Monoclonal antibody


Major histocompatibility complex


Macrophage inflammatory protein 1α


Multiple myeloma


Maximum tolerated dose


Non-Hodgkin B-cell lymphoma


Natural killer


Natural killer group 2D receptor


Overall response rate


Peripheral blood mononuclear cells


Partial response




Stable disease


Tumor-associated antigens


Toll-like receptor


Tumor necrosis factor α


Vascular cell adhesion molecule-1



This work has been supported by a grant from the French National Agency for Research titled “Investissements d’Avenir” Labex IRON (n° ANR-11-LABX-0018-01), Labex IGO (n° ANR-11- LABX-0016-01), and ArronaxPlus Equipex (n° ANR-11-EQPX-0004) and also by grants from La Ligue Contre le Cancer and from the Pays de la Loire Council “Nucléaire pour la Santé” (NucSan).

Conflict of Interest

No conflict statement: No potential conflicts of interest were disclosed


  1. 1.
    Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Tomblyn M. Radioimmunotherapy for B-cell non-hodgkin lymphomas. Cancer Control. 2012;19:196–203.PubMedCrossRefGoogle Scholar
  4. 4.
    Kraeber-Bodéré F, Salaun P-Y, Oudoux A, Goldenberg DM, Chatal J-F, Barbet J. Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer. Cancer. 2010;116:1118–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Tomblyn MB, Katin MJ, Wallner PE. The new golden era for radioimmunotherapy: not just for lymphomas anymore. Cancer Control. 2013;20:60–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol. 2016;39:1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Mole RH. Whole body irradiation—radiobiology or medicine? Br J Radiol. 1953;26:234–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Mothersill C, Seymour CB. Radiation-induced bystander effects – implications for cancer. Nat Rev Cancer. 2004;4:158–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351–60.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kroemer G, Zitvogel L. Abscopal but desirable: the contribution of immune responses to the efficacy of radiotherapy. Oncoimmunology. 2012;1:407–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rees GJ. Abscopal regression in lymphoma: a mechanism in common with total body irradiation? Clin Radiol. 1981;32:475–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Antoniades J, Brady LW, Lightfoot DA. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int J Radiat Oncol Biol Phys. 1977;2:141–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Sham RL. The abscopal effect and chronic lymphocytic leukemia. Am J Med. 1995;98:307–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Aalbers AM, Aarts MJ, Krol ADG, Marijnen CAM, Posthuma EFM. The beneficial local and abscopal effect of splenic irradiation in frail patients with chronic lymphocytic leukaemia. Neth J Med. 2016;74:122–9.PubMedGoogle Scholar
  16. 16.
    Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys. 2013;85:293–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology. 2014;3:e28780.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cotter SE, Dunn GP, Collins KM, Sahni D, Zukotynski KA, Hansen JL, et al. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch Dermatol. 2011;147:870–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut. 1998;43:575–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin Genitourin Cancer. 2012;10:196–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Takaya M, Niibe Y, Tsunoda S, Jobo T, Imai M, Kotani S, et al. Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma – a case report. Anticancer Res. 2007;27:499–503.PubMedGoogle Scholar
  22. 22.
    O'Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood. 2004;104:2235–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59:6028–32.PubMedGoogle Scholar
  24. 24.
    Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiraishi K, Ishiwata Y, Nakagawa K, Yokochi S, Taruki C, Akuta T, et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin. Cancer Res. 2008;14:1159–66.Google Scholar
  26. 26.
    Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–26.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Golden EB, Formenti SC. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology. 2014;3:e28133.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Frey B, Hehlgans S, Rödel F, Gaipl US. Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett. 2015;368:230–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Lumniczky K, Safrany G. The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences. Cancer Lett. 2015;356:114–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. Radiation triggering immune response and inflammation. Cancer Lett. 2015;368:156–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Ifeadi V, Garnett-Benson C. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One. 2012;7:e31762.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kim J-Y, Son Y-O, Park S-W, Bae J-H, Chung JS, Kim HH, et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med. 2006;38:474–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Vondrácek J, Sheard MA, Krejcí P, Minksová K, Hofmanová J, Kozubík A. Modulation of death receptor-mediated apoptosis in differentiating human myeloid leukemia HL-60 cells. J Leukoc Biol. 2001;69:794–802.PubMedGoogle Scholar
  34. 34.
    Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. 2003;170:6338–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Garnett CT, Palena C, Chakraborty M, Chakarborty M, Tsang K-Y, Schlom J, et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64:7985–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259–71.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vereecque R, Buffenoir G, Gonzalez R, Cambier N, Hetuin D, Bauters F, et al. Gamma-ray irradiation induces B7.1 expression in myeloid leukaemic cells. Br J Haematol. 2000;108:825–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Chakraborty M, Wansley EK, Carrasquillo JA, Yu S, Paik CH, Camphausen K, et al. The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin Cancer Res. 2008;14:4241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chakraborty M, Gelbard A, Carrasquillo JA, Yu S, Mamede M, Paik CH, et al. Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother. 2008;57:1173–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Seo A, Ishikawa F, Nakano H, Nakazaki H, Kobayashi K, Kakiuchi T. Enhancement of B7-1 (CD80) expression on B-lymphoma cells by irradiation. Immunology. 1999;96:642–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer. 2001;93:539–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Kotera Y, Shimizu K, Mulé JJ. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res. 2001;61:8105–9.PubMedGoogle Scholar
  43. 43.
    Zhang M, Yao Z, Patel H, Garmestani K, Zhang Z, Talanov VS, et al. Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A. 2007;104:8444–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22:113–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140:798–804.PubMedCrossRefGoogle Scholar
  46. 46.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund A-C, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28:578–90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 2008;15:1499–509.PubMedCrossRefGoogle Scholar
  49. 49.
    Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ. 2014;21:59–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 2014;21:69–78.PubMedCrossRefGoogle Scholar
  51. 51.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tang D, Loze MT, Zeh HJ, Kang R. The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy. 2010;6:1181–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050.PubMedCrossRefGoogle Scholar
  54. 54.
    Gorin J-B, Ménager J, Gouard S, Maurel C, Guilloux Y, Faivre-Chauvet A, et al. Antitumor immunity induced after α irradiation. Neoplasia. 2014;16:319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle. 2009;8:3723–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 2010;70:855–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature. 2010;467:863–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Gorin J-B, Gouard S, Ménager J, Morgenstern A, Bruchertseifer F, Faivre-Chauvet A, et al. Alpha particles induce autophagy in multiple myeloma cells. Front Med (Lausanne). 2015;2:74.Google Scholar
  63. 63.
    Rieber M, Rieber MS. Sensitization to radiation-induced DNA damage accelerates loss of bcl-2 and increases apoptosis and autophagy. Cancer Biol Ther. 2008;7:1561–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco RDNA. Damage and autophagy. Mutat Res. 2011;711:158–66.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schildkopf P, Frey B, Ott OJ, Rubner Y, Multhoff G, Sauer R, et al. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol. 2011;101:109–15.PubMedCrossRefGoogle Scholar
  66. 66.
    Rubner Y, Muth C, Strnad A, Derer A, Sieber R, Buslei R, et al. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines. Radiat Oncol. 2014;9:89.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Multhoff G, Pockley AG, Schmid TE, Schilling D. The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett. 2015;368:179–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105:256–65.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180:3132–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res. 2010;173:418–25.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ishihara H, Tsuneoka K, Dimchev AB, Shikita M. Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res. 1993;133:321–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Burnette B, Weichselbaum RR. Radiation as an immune modulator. Semin Radiat Oncol. 2013;23:273–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL. Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem. 2008;283:23419–28.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 2002;62:1462–70.PubMedGoogle Scholar
  77. 77.
    Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174:7516–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Reynders K, Illidge TM, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41:503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Everse LA, Renes IB, Jürgenliemk-Schulz IM, Rutgers DH, Bernsen MR, Dullens HF, et al. Local low-dose interleukin-2 induces systemic immunity when combined with radiotherapy of cancer. A pre-clinical study. Int J Cancer. 1997;72:1003–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Jürgenliemk-Schulz IM, Renes IB, Rutgers DH, Everse LA, Bernsen MR, Otter Den W, et al. Anti-tumor effects of local irradiation in combination with peritumoral administration of low doses of recombinant interleukin-2 (rIL-2). Radiat Oncol Investig. 1997;5:54–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Maas RA, Dullens HF, De Jong WH, Otter Den W. Immunotherapy of mice with a large burden of disseminated lymphoma with low-dose interleukin 2. Cancer Res. 1989;49:7037–40.PubMedGoogle Scholar
  82. 82.
    Masztalerz A, Everse LA, Otter WD. Presence of cytotoxic B220+CD3+CD4-CD8- cells correlates with the therapeutic efficacy of lymphoma treatment with IL-2 and/or IL-12. J Immunother. 2004;27:107–15.PubMedCrossRefGoogle Scholar
  83. 83.
    Poiré X, Kline J, Grinblatt D, Zimmerman T, Conner K, Muhs C, et al. Phase II study of immunomodulation with granulocyte-macrophage colony-stimulating factor, interleukin-2, and rituximab following autologous stem cell transplant in patients with relapsed or refractory lymphomas. Leuk Lymphoma. 2010;51:1241–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Nagler A, Berger R, Ackerstein A, Czyz JA, Diez-Martin JL, Naparstek E, et al. A randomized controlled multicenter study comparing recombinant interleukin 2 (rIL-2) in conjunction with recombinant interferon alpha (IFN-alpha) versus no immunotherapy for patients with malignant lymphoma postautologous stem cell transplantation. J Immunother. 2010;33:326–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Lum LG, Thakur A, Pray C, Kouttab N, Abedi M, Deol A, et al. Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin's lymphoma: a pilot study. Bone Marrow Transplant. 2014;49:73–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Honeychurch J, Glennie MJ, Johnson PWM, Illidge TM. Anti-CD40 monoclonal antibody therapy in combination with irradiation results in a CD8 T-cell-dependent immunity to B-cell lymphoma. Blood. 2003;102:1449–57.PubMedCrossRefGoogle Scholar
  87. 87.
    Khong A, Nelson DJ, Nowak AK, Lake RA, Robinson BWS. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol. 2012;31:246–66.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhou Z-H, Shi Q, Wang J-F, Chen Y-J, Zhuang Y-M, Pan J-Z, et al. Sensitization of multiple myeloma and B lymphoma lines to dexamethasone and gamma-radiation-induced apoptosis by CD40 activation. Apoptosis. 2005;10:123–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Hassan SB, Sørensen JF, Olsen BN, Pedersen AE. Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol. 2014;36:96–104.PubMedCrossRefGoogle Scholar
  90. 90.
    de Vos S, Forero-Torres A, Ansell SM, Kahl B, Cheson BD, Bartlett NL, et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol. 2014;7:44.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Dovedi SJ, Melis MHM, Wilkinson RW, Adlard AL, Stratford IJ, Honeychurch J, et al. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood. 2013;121:251–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Kobold S, Wiedemann G, Rothenfußer S, Endres S. Modes of action of TLR7 agonists in cancer therapy. Immunotherapy. 2014;6:1085–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhu J, He S, Du J, Wang Z, Li W, Chen X, et al. Local administration of a novel Toll-like receptor 7 agonist in combination with doxorubicin induces durable tumouricidal effects in a murine model of T cell lymphoma. J Hematol Oncol. 2015;8:21.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wysocka M, Newton S, Benoit BM, Introcaso C, Hancock AS, Chehimi J, et al. Synthetic imidazoquinolines potently and broadly activate the cellular immune response of patients with cutaneous T-cell lymphoma: synergy with interferon-gamma enhances production of interleukin-12. Clin Lymphoma Myeloma Leuk. 2007;7:524–34.CrossRefGoogle Scholar
  95. 95.
    Wysocka M, Dawany N, Benoit B, Kossenkov AV, Troxel AB, Gelfand JM, et al. Synergistic enhancement of cellular immune responses by the novel toll receptor 7/8 agonist 3M-007 and interferon-γ: implications for therapy of cutaneous T-cell lymphoma. Leuk Lymphoma. 2011;52:1970–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Weigel BJ, Cooley S, DeFor T, Weisdorf DJ, Panoskaltsis-Mortari A, Chen W, et al. Prolonged subcutaneous administration of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies. Am J Hematol. 2012;87:953–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dewan MZ, Vanpouille-Box C, Kawashima N, DiNapoli S, Babb JS, Formenti SC, et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res. 2012;18:6668–78.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Adlard AL, Dovedi SJ, Telfer BA, Koga-Yamakawa E, Pollard C, Honeychurch J, et al. A novel systemically administered toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models. Int J Cancer. 2014;135:820–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ménager J, Gorin J-B, Maurel C, Drujont L, Gouard S, Louvet C, et al. Combining α-radioimmunotherapy and adoptive T cell therapy to potentiate tumor destruction. PLoS One. 2015;10:e0130249.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Seyedin SN, Schoenhals JE, Lee DA, Cortez MA, Wang X, Niknam S, et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy. 2015;7:967–80.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Crittenden M, Kohrt H, Levy R, Jones J, Camphausen K, Dicker A, et al. Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol. 2015;25:54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. 2014;88:986–97.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010;28:4324–32.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Witzig TE, Wiseman GA, Maurer MJ, Habermann TM, Micallef INM, Nowakowski GS, et al. A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am J Hematol. 2013;88:589–93.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Abulayha A, Bredan A, Enshasy El H, Daniels I. Rituximab: modes of action, remaining dispute and future perspective. Future Oncol. 2014;10:2481–92.PubMedCrossRefGoogle Scholar
  107. 107.
    Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373:1033–40.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Buchegger F, Larson SM, Mach J-P, Chalandon Y, Dietrich P-Y, Cairoli A, et al. Radioimmunotherapy combined with maintenance anti-CD20 antibody may trigger long-term protective T cell immunity in follicular lymphoma patients. Clin Dev Immunol. 2013;2013:875343.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jacobs SA, Swerdlow SH, Kant J, Foon KA, Jankowitz R, Land SR, et al. Phase II trial of short-course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma. Clin Cancer Res. 2008;14:7088–94.PubMedCrossRefGoogle Scholar
  110. 110.
    Pisani F, Sciuto R, Dessanti ML, Giannarelli D, Kayal R, Rea S, et al. Long term efficacy and safety of fludarabine, cyclophosphamide and rituximab regimen followed by (90)Y-ibritumomab tiuxetan consolidation for the treatment of relapsed grades 1 and 2 follicular lymphoma. Exp Hematol Oncol. 2015;4:17.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Witzig TE, Hong F, Micallef IN, Gascoyne RD, Dogan A, Wagner H, et al. A phase II trial of RCHOP followed by radioimmunotherapy for early stage (stages I/II) diffuse large B-cell non-Hodgkin lymphoma: ECOG3402. Br J Haematol. 2015;170:679–86.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.PubMedCrossRefGoogle Scholar
  113. 113.
    Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104:6–17.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Morris EC, Stauss HJ. Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood. 2016;127:3305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Baptiste Gorin
    • 1
  • Jérémie Ménager
    • 1
  • Yannick Guilloux
    • 1
  • Jean-François Chatal
    • 2
  • Joëlle Gaschet
    • 1
    Email author
  • Michel Chérel
    • 3
  1. 1.CRCNA, UMR 892 Inserm, 6299 CNRS, Université de NantesNantesFrance
  2. 2.GIP ArronaxNantes-Saint-HerblainFrance
  3. 3.ICO-Gauducheau, CRCNA, UMR 892 Inserm, 6299 CNRS, Université de NantesNantesFrance

Personalised recommendations