Evaluating Spatial Data Acquisition and Interpolation Strategies for River Bathymetries

Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

The study implements a workflow to evaluate the effects of different data sampling methods and interpolation methods, when measuring and modelling a river bathymetry based on point data. Interpolation and sampling strategies are evaluated against a reference data set. The evaluation of the results includes critically discussing characteristics of the input data, the used methods and the transferability of the results. The results show that the decision for or against a particular sampling method and for a specific setting of the parameters can certainly have a great influence on the quality of the interpolation results. Further, some general guidelines for the acquisition of bathymetries are derived from the study results.

Keywords

Spatial interpolation Riverbed modelling Spatial sampling Water frame work directive Bathymetry 

Notes

Acknowledgements

This work was supported by the European Social Fund [grant number 100270097, project “Extruso”] and by the Federal Ministry of Education and Research of Germany [grant number 033W039A, project “Boot monitoring”].

References

  1. Aguilar FJ, Agüera F, Aguilar Ma, Carvajal F (2005) Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogram Eng Remote Sens 71:805–816.  https://doi.org/10.14358/PERS.71.7.805 CrossRefGoogle Scholar
  2. Casas A, Benito G, Thorndycraft V, Rico M (2006) The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf Proc Land 31:444–456.  https://doi.org/10.1002/esp.1278 CrossRefGoogle Scholar
  3. Conner JT, Tonina D (2014) Effect of cross-section interpolated bathymetry on 2D hydrodynamic model results in a large river. Earth Surf Proc Land 39:463–475.  https://doi.org/10.1002/esp.3458 CrossRefGoogle Scholar
  4. Cressie NAC (1993) Statistics for spatial data (revised edition). New YorkGoogle Scholar
  5. ESRI (2001) Using ArcGIS geostatistical analyst. ESRI, RedlandsGoogle Scholar
  6. European Union (2000) Directive 2000/60/EC of the European parliament and of the council. Off J Eur Communities 43:1–73Google Scholar
  7. Glenn J, Tonina D, Morehead MD et al (2016) Effect of transect location, transect spacing and interpolation methods on river bathymetry accuracy. Earth Surf Proc Land 41:1185–1198.  https://doi.org/10.1002/esp.3891 CrossRefGoogle Scholar
  8. Heritage GL, Milan DJ, Large ARG, Fuller IC (2009) Influence of survey strategy and interpolation model on DEM quality. Geomorphology 112:334–344.  https://doi.org/10.1016/j.geomorph.2009.06.024 CrossRefGoogle Scholar
  9. Hilldale RC, Raff D (2008) Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf Proc Land 33:773–783.  https://doi.org/10.1002/esp.1575 CrossRefGoogle Scholar
  10. Hofstra N, Haylock M, New M, et al (2008) Comparison of six methods for the interpolation of daily, European climate data. J Geophys Res Atmos 113.  https://doi.org/10.1029/2008jd010100
  11. Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106:211–232.  https://doi.org/10.1016/0022-1694(89)90073-5 CrossRefGoogle Scholar
  12. Krige DG (1966) Two-dimensional weighted moving average trend surfaces for ore-evaluation. J South African Inst Min Metallurgy 66:13–38Google Scholar
  13. Merwade VM, Cook A, Coonrod J (2008) GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environ Model Softw 23:1300–1311.  https://doi.org/10.1016/j.envsoft.2008.03.005 CrossRefGoogle Scholar
  14. Merwade VM, Maidment DR, Goff JA (2006) Anisotropic considerations while interpolating river channel bathymetry. J Hydrol 331:731–741.  https://doi.org/10.1016/j.jhydrol.2006.06.018 CrossRefGoogle Scholar
  15. Merwade VM, Maidment DR, Hodges BR (2005) Geospatial representation of river channels. J Hydrol Eng 10:243–251.  https://doi.org/10.1061/(ASCE)1084-0699(2005)10:3(243) CrossRefGoogle Scholar
  16. Milne Ja, Sear Da (1997) Modelling river channel topography using GIS. Int J Geogr Inf Sci 11:499–519.  https://doi.org/10.1080/136588197242275 CrossRefGoogle Scholar
  17. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691.  https://doi.org/10.1016/j.cageo.2004.03.012 CrossRefGoogle Scholar
  18. Rase W-D (2016) Kartographische Oberflächen. Books on DemandGoogle Scholar
  19. Santillan JR, Serviano JL, Makinano-Santillan M, Marqueso JT (2016) Influence of river bed elevation survey configurations and interpolation methods on the accuracy of lidar Dtm-based river flow simulations. ISPRS Int Arch Photogram Remote Sens Spat Inf Sci XLII-4/W1:225–235.  https://doi.org/10.5194/isprs-archives-xlii-4-w1-225-2016
  20. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, pp. 517–524.  https://doi.org/10.1145/800186.810616
  21. US Army Corps of Engineers: Hydrographic survey data. http://www.lrp.usace.army.mil/Missions/Navigation/Navigation-Charts/HydrographicSurveyData/. Accessed 18 Sep 2016
  22. Vande Wiele, T.: Mapping with multibeam data : are there ideal model settings ? In: International Cartographic Conference, Beijing, China (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of GeoinformaticsTechnische Universität DresdenDresdenGermany

Personalised recommendations