Tissue Engineering in Oral and Maxillofacial Surgery: From Lab to Clinics

  • Riitta Seppänen-Kaijansinkko
  • Bettina Mannerström


Tissue engineering has been considered as a third treatment modality complementing medicine and surgery. It was first defined in 1993 by Langer and Vacanti (Science 260:920–926, 1993). Today it is a rapidly growing field of research expanding to all disciplines in medicine. Currently, it is possible to engineer both hard and soft tissues in oral and maxillofacial surgery.

Tissue engineering consists usually of three components: scaffolds, cells, and regulating factors. Scaffolds are preferably biodegradable, i.e., they resorb when they are no longer needed, while regenerated tissue fills the space of resorbed material. Different types of cells can be used depending on the type of required tissue. Both stem cells and differentiated cells have been used, while regulating factors are most often growth factors. The growth of vascularization, to enable adequate delivery of nutrients and oxygen, must also be taken into account when constructs are of large size and diffusion is not enough to keep the construct vital. Regulating factors can be proteins, such as growth factors, culture media ingredients, and structural or physical elements. The required tissue can be manufactured either in the body, on the site of the defect, or ectopically, for example, in the muscular environment from where it is transplanted later, when mature enough, to the defect site. In this chapter, the past and the present of tissue engineering in oral and maxillofacial surgery will be elaborated, not forgetting the future perspectives.


Oral surgery Maxillofacial surgery Tissue engineering Regenerative medicine Stem cells Cells Scaffold materials Extracellular vesicles 3D printing 


  1. 1.
    De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Review. Front Immunol. 2014;5:608. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6. ReviewCrossRefGoogle Scholar
  3. 3.
    Kim RY, Bae SS, Feinberg SE. Soft tissue engineering. Oral Maxillofac Surg Clin North Am. 2017;29(1):89–104. Scholar
  4. 4.
    Dayashankar CP, Deepika PC, Siddaramaiah B. Clinical and radiographic evaluation of citric acid-based nano HA composite graft in the regeneration of intrabony defects – a randomized controlled trial. Contemp Clin Dent. 2017;8(3):380–6. Scholar
  5. 5.
    Kowal T, Hahn NC, Eider S, Marzillier J, Fodera DM, Thamma U, et al. New BAG scaffolds with exceptional qualities for bone tissue regeneration: response of osteoblasts and osteoclasts. Biomed Mater. 2017. [Epub ahead of print]
  6. 6.
    Mesimäki K, Lindroos B, Törnwall J, Miettinen S, Mauno J, Lindqvist C, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9. [Epub 2009 Jan 24]CrossRefPubMedGoogle Scholar
  7. 7.
    Stoor P, Apajalahti S, Kontio R. Regeneration of cystic bone cavities and bone defects with BAG S53P4 in the upper and lower jaws. J Craniofac Surg. 2017a;28(5):1197–205. Scholar
  8. 8.
    Stoor P, Suomalainen A, Mesimäki K, Kontio R. Rapid prototyped patient specific guiding implants in critical mandibular reconstruction. J Craniomaxillofac Surg. 2017b;45(1):63–70. [Epub 2016 Nov 5]CrossRefPubMedGoogle Scholar
  9. 9.
    Seppänen-Kaijansinkko R, Kontio R. Tissue engineered maxillofacial reconstruction: focus on bone. In: Kuriakose MA, editor. Contemporary oral oncology, vol. 3. New York: Springer International Publishing; 2017. p. 343–56. CrossRefGoogle Scholar
  10. 10.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. Scholar
  11. 11.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. Scholar
  12. 12.
    International Stem Cell Initiative. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29(12):1132–44. Scholar
  13. 13.
    Heslop JA, Hammond TG, Santeramo I, Tort Piella A, Hopp I, Zhou J, et al. Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med. 2015;4(4):389–400. [Epub 2015 Feb 26]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Csobonyeiova M, Polak S, Koller J, Danisovic L. Induced pluripotent stem cells and their implication for regenerative medicine. Review. Cell Tissue Bank. 2015;16(2):171–80. [Epub 2014 Jul 19]CrossRefPubMedGoogle Scholar
  15. 15.
    Rosenbaum AJ, Grande DA, Dines JS. The use of mesenchymal stem cells in tissue engineering. A global assessment. Organogenesis. 2008;4(1):23–7.CrossRefGoogle Scholar
  16. 16.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  17. 17.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.CrossRefGoogle Scholar
  18. 18.
    Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe LMSC. Committee of the International Society for Cellular Therapy (ISCT) immunological characterization of multipotent mesenchymal stromal cells—the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy. 2013;15(9):1054–61.CrossRefGoogle Scholar
  19. 19.
    Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Review. Nat Biotechnol. 2014;32(3):252–60. [Epub 2014 Feb 23]CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell based tissue engineering. Arthritis Res Ther. 2003;5(1):32–45. [Epub 2002 Dec 11]CrossRefGoogle Scholar
  21. 21.
    Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mandrucky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34. [Epub 2015 Dec 23]CrossRefGoogle Scholar
  23. 23.
    Gou M, Qu X, Zhu W, Xiang M, Yang J, Zhang K, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun. 2014;5:3774. Scholar
  24. 24.
    Reddi AH. BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine Growth Factor Rev. 2005;16(3):249–50.CrossRefGoogle Scholar
  25. 25.
    Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1(1):87–105.CrossRefGoogle Scholar
  26. 26.
    Kyllönen L, Haimi S, Säkkinen J, Kuokkanen H, Mannerström B, Sándor KB, et al. Exogenously added BMP-6, BMP-7 and VEGF may not enhance the osteogenic differentiation of human adipose stem cells. Growth Factors. 2013;31(5):141–53. [Epub 2013 Jul 23]CrossRefPubMedGoogle Scholar
  27. 27.
    Li CJ, Madhu V, Balian G, Dighe AS, Cui Q. Cross-talk between VEGF and BMP-6 pathways accelerates osteogenic differentiation of humanadipose-derived stem cells. J Cell Physiol. 2015;230(11):2671–82. Scholar
  28. 28.
    Zhang Y, Madhu V, Dighe AS, Irvine JN Jr, Cui Q. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors. 2012;30(5):333–43. Scholar
  29. 29.
    Khanna-Jain R, Agata H, Vuorinen A, Sándor GKB, Suuronen R, Miettinen S. Addition of BMP-2 or BMP-6 to dexamethasone, ascorbic acid, and β-glycerophosphate may not enhance osteogenic differentiation of human periodontal ligament cells. Growth Factors. 2010;28(6):437–46. [Epub 2010 Jun 23]CrossRefPubMedGoogle Scholar
  30. 30.
    Vanhatupa S, Ojansivu M, Autio R, Juntunen M, Miettinen S. Bone morphogenetic protein-2 induces donor-dependent osteogenic and adipogenic differentiation in human adipose stem cells. Stem Cells Transl Med. 2015;4(12):1391–402. [Epub 2015 Oct 22]CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, Song F. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007;11(30):1–150. iii–ivCrossRefGoogle Scholar
  32. 32.
    Kestle JRW. Editorial: Food and Drug Administration Safety Communication on rhBMP-2 use. J Neurosurg Pediatr. 2015;16(1):1–3. [Epub 2015 Apr 10]CrossRefPubMedGoogle Scholar
  33. 33.
    Salisbury Palomares KT, Gleason RE, Mason ZD, Cullinane DM, Einhorn TE, Gerstenfeld LC, et al. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res. 2009;27(9):1123–32. Scholar
  34. 34.
    Tirkkonen L, Halonen H, Hyttinen J, Kuokkanen H, Sievänen H, Koivisto AM, et al. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J R Soc Interface. 2011;8(65):1736–47. [Epub 2011 May 25]CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A. 2013;19(7–8):882–92. [Epub 2013 Jan 4]CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sayyar S, Bjorninen M, Haimi S, Miettinen S, Gilmore K, Grijpma D, Wallace G. UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds. ACS Appl Mater Interfaces. 2016;8(46):31916–25. [Epub 2016 Nov 10]CrossRefGoogle Scholar
  37. 37.
    Dissanayaka WL, Zhang C. The role of vasculature engineering in dental pulp regeneration. J Endod. 2017;43(9S):S102–6. Scholar
  38. 38.
    Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2017 Jun 21. [Epub ahead of print]
  39. 39.
    Wang J, Feng JQ. Signaling pathways critical for tooth root formation. Review. J Dent Res. 2017;96(11):1221–8. [Epub 2017 Jun 30]CrossRefPubMedGoogle Scholar
  40. 40.
    Ou Q, Wang X, Wang Y, Wang Y, Lin X. Oestrogen retains human periodontal ligament stem cells stemness in long-term culture. Cell Prolif. 2017 Oct 12. [Epub ahead of print]
  41. 41.
    Yang F, Miao Y, Wang Y, Zhang LM, Lin X. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells. Materials (Basel). 2017;10(10). pii: E1168. Scholar
  42. 42.
    Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells. 2017;9(8):107–17. Scholar
  43. 43.
    Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD. Induction of salivary gland-like cells from dental follicle epithelial cells. J Dent Res. 2017;96(9):1035–43. [Epub 2017 May 25]CrossRefPubMedGoogle Scholar
  44. 44.
    Seo S, Na K. Mesenchymal stem cell based tissue engineering for chondrogenesis. A review. J Biomed Biotechnol. 2011:806891. [Epub 2011 Oct 9]
  45. 45.
    Mäenpää K, Ellä V, Mauno J, Kellomäki M, Suuronen R, Ylikomi T, et al. Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. J R Soc Interface. 2010;7(42):177–88. [Epub 2009 May 27]CrossRefPubMedGoogle Scholar
  46. 46.
    Ahtiainen K, Mauno J, Ellä V, Hagström J, Lindqvist C, Miettinen S, et al. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. J R Soc Interface. 2013;10(85):20130287. [Epub 2013 Aug 6]CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang L, Detamore MS. Tissue engineering the mandibular condyle. A review. Tissue Eng. 2007;13(8):1955–71.CrossRefGoogle Scholar
  48. 48.
    Chang J, Rasamny JJ, Park SS. Injectable tissue-engineered cartilage using a fibrin sealant. Arch Facial Plast Surg. 2007;9(3):161–6.CrossRefGoogle Scholar
  49. 49.
    Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A. 2009;15(8):2259–66. Scholar
  50. 50.
    Wang L, Zhao L, Detamore MS. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. J Tissue Eng Regen Med. 2011;5(9):712–21. [Epub 2010 Dec 30]CrossRefPubMedGoogle Scholar
  51. 51.
    Izumi K, Neiva RF, Feinberg SE. Intraoral grafting of tissue-engineered human oral mucosa. Int J Oral Maxillofac Implants. 2013;28(5):e295–303. Scholar
  52. 52.
    Duisit J, Maistriaux L, Taddeo A, Orlando G, Joris V, Coche E, et al. Bioengineering a human face graft: the matrix of identity. Ann Surg. 2017;266(5):754–64. Scholar
  53. 53.
    Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8–12. [Epub 2015 Nov 10]CrossRefPubMedGoogle Scholar
  54. 54.
    Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40. [Epub 2014 Feb 20]CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shegarfi H, Reikeras O. Review article: bone transplantation and immune response. J Orthop Surg (Hong Kong). 2009;17:206–11. Scholar
  56. 56.
    Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62(6):724–9.CrossRefGoogle Scholar
  57. 57.
    Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell based bone tissue engineering in jaw defects. Biomaterials. 2008;29(21):3053–61. [Epub 2008 Apr 22]CrossRefPubMedGoogle Scholar
  58. 58.
    Pradel W, Eckelt U, Lauer G. Bone regeneration after enucleation of mandibular cysts: comparing autogenous grafts from tissue-engineered bone and iliac bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):285–90. Epub 2006 Jan 19CrossRefGoogle Scholar
  59. 59.
    Zétola A, Ferreira FM, Larson R, Shibli JA. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandibular sequelae after tumor resection. Oral Maxillofac Surg. 2011;15(3):169–74. [Epub 2010 Jun 24]CrossRefPubMedGoogle Scholar
  60. 60.
    Park JS, Kim BC, Kim BH, Lee JI, Lee J. Up-and-coming mandibular reconstruction technique with autologous human bone marrow stem cells and iliac bone graft in patients with large bony defect. J Craniofac Surg. 2015;26(8):e718–20. Scholar
  61. 61.
    Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364(9436):766–70.CrossRefGoogle Scholar
  62. 62.
    Matsuo A, Chiba H, Takahashi H, Toyoda J, Abukawa H. Clinical application of a custom-made bioresorbable raw particulate HA/poly-L-lactide mesh tray for mandibular reconstruction. Odontology. 2010;98(1):85–8. [Epub 2010 Feb 16]CrossRefPubMedGoogle Scholar
  63. 63.
    Kokemueller H, Spalthoff S, Nolff M, Tavassol F, Essig H, Stuehmer C, et al. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010;39(4):379–87. [Epub 2010 Feb 18]CrossRefPubMedGoogle Scholar
  64. 64.
    Rubin JP, Gurtner GC, Liu W, March KL, Seppanen-Kaijansinkko R, Yaszemski MJ, et al. Surgical therapies and tissue engineering: at the intersection between innovation and regulation. Tissue Eng Part A. 2016;22(5–6):397–400. Scholar
  65. 65.
    O’Neill HL, Cassidy AP, Harris OB, Cassidy JW. BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas. PeerJ. 2016;4:e1957. eCollection 2016CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Weiss KR. To B(MP-2) or not to B(MP-2) or much ado about nothing. Are orthobiologics in tumor surgery worth the risks? Clin Cancer Res. 2015;21(13):2889–91. [Epub 2015 Jan 21]CrossRefPubMedGoogle Scholar
  67. 67.
    Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2013;2. Published online 2013 Feb 15.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Riitta Seppänen-Kaijansinkko
    • 1
  • Bettina Mannerström
    • 1
  1. 1.Department of Oral and Maxillofacial DiseasesUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations