Advertisement

Editing of Mitochondrial RNAs in Physarum polycephalum

  • Jillian Houtz
  • Nicole Cremona
  • Jonatha M. Gott
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 34)

Abstract

The mitochondrial transcriptome of the true acellular slime mold Physarum polycephalum (Physarum) undergoes extensive RNA editing to produce precise, site-specific changes not encoded at the DNA level. RNA editing in Physarum is essential for proper mitochondrial gene expression by creating open reading frames in protein-coding RNAs and by altering the folding stability of structural RNAs. Physarum carries out one of the widest range of RNA editing events yet described. These changes to mitochondrial RNAs involve the site-specific insertion of over 1300 “extra” nucleotides, deletion of 3 encoded nucleotides, targeted base conversions, and the removal and replacement of nucleotides at the 5′ end of certain tRNAs. While these sequence alterations are absolutely required for the production of functional transcripts, it remains a mystery why they are not encoded in the mitochondrial genome. Although various examples of RNA editing have been described in several eukaryotic organisms, Physarum mitochondria achieve non-templated nucleotide insertion by a unique co-transcriptional mechanism. The cis-acting elements required for insertion editing have been localized to a relatively small region in the vicinity of editing sites, but the details as to how editing sites are recognized and the identity of the trans-acting editing factor(s) required for insertion of these extra nucleotides remain to be elucidated. Two other mechanistically distinct forms of editing, 5′ tRNA editing and C-to-U conversion, have also been described, which proceed via two independent, posttranscriptional pathways. The relatively recent availability of genome and transcriptome sequence data has facilitated the identification of potential candidates for each of these activities and experiments to determine which of these factors are involved in the various forms of editing are underway.

References

  1. Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE (2011) A role for tRNAHis guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. RNA 17(4):613–623.  https://doi.org/10.1261/rna.2517111 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abad MG, Long Y, Kinchen RD, Schindel ET, Gray MW, Jackman JE (2014) Mitochondrial tRNA 5′-editing in Dictyostelium discoideum and Polysphondylium pallidum. J Biol Chem 289(22):15155–15165.  https://doi.org/10.1074/jbc.M114.561514 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antes T, Costandy H, Mahendran R, Spottswood M, Miller D (1998) Insertional editing of mitochondrial tRNAs of Physarum polycephalum and Didymium nigripes. Mol Cell Biol 18(12):7521–7527CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barth C, Greferath U, Kotsifas M, Fisher PR (1999) Polycistronic transcription and editing of the mitochondrial small subunit (SSU) ribosomal RNA in Dictyostelium discoideum. Curr Genet 36(1–2):55–61CrossRefPubMedGoogle Scholar
  5. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55(6):1089–1098CrossRefPubMedGoogle Scholar
  6. Beargie C, Liu T, Corriveau M, Lee HY, Gott J, Bundschuh R (2008) Genome annotation in the presence of insertional RNA editing. Bioinformatics 24(22):2571–2578CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826CrossRefPubMedGoogle Scholar
  8. Betat H, Long Y, Jackman JE, Mörl M (2014) From end to end: tRNA editing at 5′- and 3′-terminal positions. Int J Mol Sci 15(12):23975–23998.  https://doi.org/10.3390/ijms151223975 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bullerwell CE, Gray MW (2005) In vitro characterization of a tRNA editing activity in the mitochondria of Spizellomyces punctatus, a chytridiomycete fungus. J Biol Chem 280(4):2463–2470.  https://doi.org/10.1074/jbc.M411273200 CrossRefPubMedGoogle Scholar
  10. Bullerwell CE, Burger G, Gott JM, Kourennaia O, Schnare MN, Gray MW (2010) Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa. Eukaryot Cell 9(5):762–773CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bundschuh R, Altmüller J, Becker C, Nürnberg P, Gott JM (2011) Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res 39(14):6044–6055CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burger G, Yan Y, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25(9):381–386.  https://doi.org/10.1016/j.tig.2009.07.003 CrossRefPubMedGoogle Scholar
  13. Byrne EM (2004) Chimeric templates and assays used to study Physarum cotranscriptional insertional editing in vitro. Methods Mol Biol 265:293–314PubMedGoogle Scholar
  14. Byrne EM, Gott JM (2002) Cotranscriptional editing of Physarum mitochondrial RNA requires local features of the native template. RNA 8(9):1174–1185CrossRefPubMedPubMedCentralGoogle Scholar
  15. Byrne EM, Gott JM (2004) Unexpectedly complex editing patterns at dinucleotide insertion sites in Physarum mitochondria. Mol Cell Biol 24(18):7821–7828CrossRefPubMedPubMedCentralGoogle Scholar
  16. Byrne EM, Stout A, Gott JM (2002) Editing site recognition and nucleotide insertion are separable processes in Physarum mitochondria. EMBO J 21(22):6154–6161CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56(5):759–764CrossRefPubMedGoogle Scholar
  18. Chen C, Frankhouser D, Bundschuh R (2012) Comparison of insertional RNA editing in myxomycetes. PLoS Comput Biol 8(2):e1002400.  https://doi.org/10.1371/journal.pcbi.1002400 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng YW, Gott JM (2000) Transcription and RNA editing in a soluble in vitro system from Physarum mitochondria. Nucleic Acids Res 28(19):3695–3701CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng YW, Visomirski-Robic LM, Gott JM (2001) Non-templated addition of nucleotides to the 3′ end of nascent RNA during RNA editing in Physarum. EMBO J 20(6):1405–1414.  https://doi.org/10.1093/emboj/20.6.1405 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341(6243):662–666.  https://doi.org/10.1038/341662a0 CrossRefPubMedGoogle Scholar
  22. Dang Y, Green BR (2009) Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. Gene 442(1–2):73–80.  https://doi.org/10.1016/j.gene.2009.04.006 CrossRefPubMedGoogle Scholar
  23. Daniel C, Lagergren J, Ohman M (2015) RNA editing of non-coding RNA and its role in gene regulation. Biochimie 117:22–27.  https://doi.org/10.1016/j.biochi.2015.05.020 CrossRefPubMedGoogle Scholar
  24. Fu CJ, Sheikh S, Miao W, Andersson SG, Baldauf SL (2014) Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol 6(9):2240–2257.  https://doi.org/10.1093/gbe/evu180 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gott JM (2013) Mechanisms and functions of RNA editing in Physarum polycephalum. In: Mass S (ed) RNA editing: current research and future trends. Caister Academic Press, Norfolk, pp 17–40Google Scholar
  26. Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531.  https://doi.org/10.1146/annurev.genet.34.1.499 CrossRefPubMedGoogle Scholar
  27. Gott JM, Rhee AC (2008) Insertion/deletion editing in Physarum polycephalum. In: Goringer HU (ed) RNA editing. Springer, Berlin, pp 85–104CrossRefGoogle Scholar
  28. Gott JM, Visomirski LM, Hunter JL (1993) Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 mRNA of Physarum polycephalum. J Biol Chem 268(34):25483–25486PubMedGoogle Scholar
  29. Gott JM, Parimi N, Bundschuh R (2005) Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs. Nucleic Acids Res 33(16):5063–5072.  https://doi.org/10.1093/nar/gki820 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gott JM, Somerlot BH, Gray MW (2010) Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria. RNA 16(3):482–488.  https://doi.org/10.1261/rna.1958810 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gott JM, Naegele GM, Howell SJ (2016) Electroporation of DNA into Physarum polycephalum mitochondria: effects on transcription and RNA editing in isolated organelles. Genes (Basel) 7(12).  https://doi.org/10.3390/genes7120128 CrossRefPubMedCentralGoogle Scholar
  32. Grewe F, Herres S, Viehöver P, Polsakiewicz M, Weisshaar B, Knoop V (2011) A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res 39(7):2890–2902.  https://doi.org/10.1093/nar/gkq1227 CrossRefPubMedGoogle Scholar
  33. Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev 17(23):2889–2901.  https://doi.org/10.1101/gad.1148603 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341(6243):660–662.  https://doi.org/10.1038/341660a0 CrossRefPubMedGoogle Scholar
  35. Gualberto JM, Weil JH, Grienenberger JM (1990) Editing of the wheat coxIII transcript: evidence for twelve C to U and one U to C conversions and for sequence similarities around editing sites. Nucleic Acids Res 18(13):3771–3776CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hatzoglou E, Rodakis GC, Lecanidou R (1995) Complete sequence and gene organization of the mitochondrial genome of the land snail Albinaria coerulea. Genetics 140(4):1353–1366PubMedPubMedCentralGoogle Scholar
  37. Hendrickson PG, Silliker ME (2010) RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis. Curr Genet 56(3):203–213.  https://doi.org/10.1007/s00294-010-0292-4 CrossRefPubMedGoogle Scholar
  38. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246(4937):1632–1634CrossRefPubMedGoogle Scholar
  39. Hoch B, Maier RM, Appel K, Igloi GL, Kössel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353(6340):178–180.  https://doi.org/10.1038/353178a0 CrossRefPubMedGoogle Scholar
  40. Horton TL, Landweber LF (2000) Evolution of four types of RNA editing in myxomycetes. RNA 6(10):1339–1346CrossRefPubMedPubMedCentralGoogle Scholar
  41. Huang J, Sousa R (2000) T7 RNA polymerase elongation complex structure and movement. J Mol Biol 303(3):347–358.  https://doi.org/10.1006/jmbi.2000.4150 CrossRefPubMedGoogle Scholar
  42. Ichinose M, Sugita M (2016) RNA editing and its molecular mechanism in plant organelles. Genes (Basel) 8(1).  https://doi.org/10.3390/genes8010005 CrossRefPubMedCentralGoogle Scholar
  43. Jackman JE, Gott JM, Gray MW (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18(5):886–899.  https://doi.org/10.1261/rna.032300.112 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Knoop V (2011) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68(4):567–586.  https://doi.org/10.1007/s00018-010-0538-9 CrossRefPubMedGoogle Scholar
  45. Kolakofsky D (2016) Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: a review. Virology 498:94–98.  https://doi.org/10.1016/j.virol.2016.08.018 CrossRefPubMedGoogle Scholar
  46. Krishnan U, Barsamian A, Miller DL (2007) Evolution of RNA editing sites in the mitochondrial small subunit rRNA of the Myxomycota. Methods Enzymol 424:197–220.  https://doi.org/10.1016/S0076-6879(07)24009-1 CrossRefPubMedGoogle Scholar
  47. Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31(9):2417–2423CrossRefPubMedPubMedCentralGoogle Scholar
  48. Limbach PA, Crain PF, McCloskey JA (1994) Summary: the modified nucleosides of RNA. Nucleic Acids Res 22(12):2183–2196CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320(4):727–739CrossRefPubMedGoogle Scholar
  50. Lonergan KM, Gray MW (1993) Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 259(5096):812–816CrossRefPubMedGoogle Scholar
  51. Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE (2016) Identification of distinct biological functions for four 3′-5′ RNA polymerases. Nucleic Acids Res 44(17):8395–8406.  https://doi.org/10.1093/nar/gkw681 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mahendran R, Spottswood MR, Miller DL (1991) RNA editing by cytidine insertion in mitochondria of Physarum polycephalum. Nature 349(6308):434–438.  https://doi.org/10.1038/349434a0 CrossRefPubMedGoogle Scholar
  53. Mahendran R, Spottswood MS, Ghate A, Ling ML, Jeng K, Miller DL (1994) Editing of the mitochondrial small subunit rRNA in Physarum polycephalum. EMBO J 13(1):232–240PubMedPubMedCentralCrossRefGoogle Scholar
  54. Miller D, Mahendran R, Spottswood M, Costandy H, Wang S, Ling ML, Yang N (1993) Insertional editing in mitochondria of Physarum. Semin Cell Biol 4(4):261–266CrossRefPubMedGoogle Scholar
  55. Miller ML, Antes TJ, Qian F, Miller DL (2006) Identification of a putative mitochondrial RNA polymerase from Physarum polycephalum: characterization, expression, purification, and transcription in vitro. Curr Genet 49(4):259–271.  https://doi.org/10.1007/s00294-005-0053-y CrossRefPubMedGoogle Scholar
  56. Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res 44(10):4907–4919.  https://doi.org/10.1093/nar/gkw188 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E (2014) Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 6(6):1408–1422.  https://doi.org/10.1093/gbe/evu109 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17(2):83–96.  https://doi.org/10.1038/nrm.2015.4 CrossRefPubMedGoogle Scholar
  59. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50(6):831–840CrossRefPubMedGoogle Scholar
  60. Rhee AC, Somerlot BH, Parimi N, Gott JM (2009) Distinct roles for sequences upstream of and downstream from Physarum editing sites. RNA 15(9):1753–1765.  https://doi.org/10.1261/rna.1668309 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rüdinger M, Fritz-Laylin L, Polsakiewicz M, Knoop V (2011) Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA 17(12):2058–2062.  https://doi.org/10.1261/rna.02962911 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rundquist BA, Gott JM (1995) RNA editing of the coI mRNA throughout the life cycle of Physarum polycephalum. Mol Gen Genet 247(3):306–311CrossRefPubMedGoogle Scholar
  63. Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Benard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W (2015) The Physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biol Evol 8(1):109–125.  https://doi.org/10.1093/gbe/evv237 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schallenberg-Rüdinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V (2013) A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol 10(9):1549–1556.  https://doi.org/10.4161/rna.25755 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schuster W, Hiesel R, Wissinger B, Brennicke A (1990) RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Mol Cell Biol 10(5):2428–2431CrossRefPubMedPubMedCentralGoogle Scholar
  66. Shoguchi E, Shinzato C, Hisata K, Satoh N, Mungpakdee S (2015) The large mitochondrial genome of Symbiodinium minutum reveals conserved noncoding sequences between dinoflagellates and apicomplexans. Genome Biol Evol 7(8):2237–2244.  https://doi.org/10.1093/gbe/evv137 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Söll D (1971) Enzymatic modification of transfer RNA. Science 173(3994):293–299CrossRefPubMedGoogle Scholar
  68. Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67(1):11–19CrossRefPubMedGoogle Scholar
  69. Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48(3):303–312CrossRefPubMedGoogle Scholar
  70. Sturm NR, Simpson L (1990) Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 61(5):879–884CrossRefPubMedGoogle Scholar
  71. Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature 420(6911):43–50.  https://doi.org/10.1038/nature01129 CrossRefPubMedGoogle Scholar
  72. Takano H, Abe T, Sakurai R, Moriyama Y, Miyazawa Y, Nozaki H, Kawano S, Sasaki N, Kuroiwa T (2001) The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol Gen Genet 264(5):539–545CrossRefPubMedGoogle Scholar
  73. Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54(6):891–902CrossRefPubMedGoogle Scholar
  74. Traphagen SJ, Dimarco MJ, Silliker ME (2010) RNA editing of 10 Didymium iridis mitochondrial genes and comparison with the homologous genes in Physarum polycephalum. RNA 16(4):828–838.  https://doi.org/10.1261/rna.1989310 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Valach M, Moreira S, Kiethega GN, Burger G (2014) Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res 42(4):2660–2672.  https://doi.org/10.1093/nar/gkt1152 CrossRefPubMedGoogle Scholar
  76. Vidal S, Curran J, Kolakofsky D (1990) Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol 64(1):239–246PubMedPubMedCentralGoogle Scholar
  77. Visomirski-Robic LM, Gott JM (1995) Accurate and efficient insertional RNA editing in isolated Physarum mitochondria. RNA 1(7):681–691PubMedPubMedCentralGoogle Scholar
  78. Visomirski-Robic LM, Gott JM (1997a) Insertional editing in isolated Physarum mitochondria is linked to RNA synthesis. RNA 3(8):821–837PubMedPubMedCentralGoogle Scholar
  79. Visomirski-Robic LM, Gott JM (1997b) Insertional editing of nascent mitochondrial RNAs in Physarum. Proc Natl Acad Sci U S A 94(9):4324–4329CrossRefPubMedPubMedCentralGoogle Scholar
  80. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214(2):421–430CrossRefPubMedGoogle Scholar
  81. Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97.  https://doi.org/10.1016/j.gene.2004.06.018 CrossRefPubMedGoogle Scholar
  82. Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298(5597):1387–1395.  https://doi.org/10.1126/science.1077464 CrossRefPubMedGoogle Scholar
  83. Yokobori S, Pääbo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci U S A 92(22):10432–10435CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24(6):1008–1014CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577(3):535–538.  https://doi.org/10.1016/j.febslet.2004.10.060 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jillian Houtz
    • 1
  • Nicole Cremona
    • 1
  • Jonatha M. Gott
    • 1
  1. 1.Center for RNA Science and Therapeutics, 10900 Euclid AvenueCase Western Reserve UniversityClevelandUSA

Personalised recommendations