Abstract

Briefly discuss the key development of MDS models over time. Explain some new or possible applications of MDS analysis. Strengths and limitations are also discussed.

Keywords

Historical development of MDS models 

References

  1. Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
  2. Attneave, F. (1950). Dimensions of similarity. American Journal of Psychology, 63, 516–536.CrossRefGoogle Scholar
  3. Bloxom, B. (1968). Individual differences in multidimensional scaling models. Research Bulletin, 68–45. Princeton: Educational Testing Service.Google Scholar
  4. Busing, F. M. T. A., & de Rooij, M. (2009). Unfolding incomplete data: Guidelines for unfolding row-conditional rank order data with random missings. Journal of Classification, 26, 329–360.MathSciNetCrossRefGoogle Scholar
  5. Busing, F. M. T. A., Groenen, P. J. K., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70(1), 71–98.MathSciNetCrossRefGoogle Scholar
  6. Busing, F. M. T. A., Heiser, W. J., & Cleaver, G. (2010). Restricted unfolding: Preference analysis with optimal transformations of preferences and attributes. Food Quality and Preference, 21(1), 82–92.CrossRefGoogle Scholar
  7. Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney and S. Nerlove, (Eds.) Multidimensional scaling: Theory and applications in the behavioral sciences, Vol I. New York: Academic Press.Google Scholar
  8. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-young” decomposition. Psychometrika, 35, 238–319.CrossRefGoogle Scholar
  9. Coombs, C. H. (1964). A theory of data. New York: Wiley.Google Scholar
  10. Davison, M. L., Gasser, M., & Ding, S. (1996). Identifying major profile patterns in a population: An exploratory study of WAIS and GATB patterns. Psychological Assessment, 8, 26–31.CrossRefGoogle Scholar
  11. DeSarbo, W. S., Howard, D., & Jedidi, K. (1991). Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56, 121–136.CrossRefGoogle Scholar
  12. Ding, C. S. (2001). Profile analysis: Multidimensional scaling approach. Practical Assessment, Research, and Evaluation, 7(16).Google Scholar
  13. Ding, C. S. (2007). Studying growth heterogeneity with multidimensional scaling profile analysis. International Journal of Behavioral Development, 31(4), 347–356.CrossRefGoogle Scholar
  14. Ding, C. S., & Davison, M. L. (2010). Multidimensional scaling analysis using Akaike’s information criterion. Educational and Psychological Measurement, 70(2), 199–214.Google Scholar
  15. Ding, C. S., Davison, M. L., & Petersen, A. C. (2005). Multidimensional scaling analysis of growth and change. Journal of Educational Measurement, 42, 171–191.CrossRefGoogle Scholar
  16. Horan, C. B. (1969). Multidimensional scaling: Combining observations when individuals have different perceptual structure. Psychometrika, 34, 139–165.CrossRefGoogle Scholar
  17. Kruskal, J. B. (1964). Nonmetric scaling: A numerical method. Psychometrika, 29, 28–42.MathSciNetMATHGoogle Scholar
  18. MacKay, D. B. (2007). Internal multidimensional unfolding about a single ideal: A probabilistic solution. Journal of Mathematical Psychology, 51, 305–318.MathSciNetCrossRefGoogle Scholar
  19. MacKay, D. B., & Zinnes, J. (2005). PROSCAL professional: A program for probabilistic scaling: www.proscal.com.
  20. McGee, V. C. (1968). Multidimensional scaling of n sets of similarity measures: A nonmetric scaling. Multivariate Behavioral Research, 3, 233–248.CrossRefGoogle Scholar
  21. Messick, S. J., & Abelson, R. P. (1956). The additive constant problem in multidimensional scaling. Psychometrika, 21, 1–15.CrossRefGoogle Scholar
  22. Muthen, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In L. M. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 291–322). Washington, DC: American Psychological Association.Google Scholar
  23. Nagin, D. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139–177.CrossRefGoogle Scholar
  24. Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241–266.CrossRefGoogle Scholar
  25. Ramsay, J. O. (1991). MULTISCALE manual (extended version). Montreal: McGill University.Google Scholar
  26. Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to multidimensional scaling: Theory, methods and applications. New York: Academic Press.MATHGoogle Scholar
  27. Shepard, L. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance. I and II. Psychometrika, 27, 323–355.MathSciNetCrossRefGoogle Scholar
  28. Shepard, R. N., Romney, A. K., & Nerlove, S. B. (Eds.). (1972). Multidimensional scaling: Theory (Vol. 1). New York: Seminar Press.Google Scholar
  29. Takane, Y. (1978a). A maximum likelihood method for nonmetric multidimensional scaling: I the case in which all empirical pairwise orderings are independent-evaluation. Japanese Psychological Research, 20, 105–114.CrossRefGoogle Scholar
  30. Takane, Y. (1978b). A maximum likelihood method for nonmetric multidimensional scaling: I the case in which all empirical pairwise orderings are independent-theory. Japanese Psychological Research, 20, 7–17.CrossRefGoogle Scholar
  31. Takane, Y., & Carroll, J. D. (1981). Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities. Psychometrika, 46, 389–405.MathSciNetCrossRefGoogle Scholar
  32. Takane, Y., Young, F. W., & De Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67.CrossRefGoogle Scholar
  33. Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401–419.MathSciNetCrossRefGoogle Scholar
  34. Treat, T. A., McFall, R. M., Viken, R. J., Nosofsky, R. M., MacKay, D. B., & Kruschke, J. K. (2002). Assessing clinically relevant perceptual organization with multidimensional scaling techniques. Psychological Assessment, 14, 239–252.CrossRefGoogle Scholar
  35. Tucker, L. R. (1972). Relations between multidimensional scaling and three-mode factor analysis. Psychometrika, 37, 3–27.MathSciNetCrossRefGoogle Scholar
  36. Tucker, L. R., & Messick, S. J. (1963). An individual differences model for multidimensional scaling. Psychometrika, 28, 333–367.CrossRefGoogle Scholar
  37. Vera, J., Macias, R., & Heiser, W. J. (2009). A latent class multidimensional scaling model for two-way one-mode continuous rating dissimilarity data. Psychometrika, 2009, 297–315.MathSciNetCrossRefGoogle Scholar
  38. Young, F. W. (1987). Multidimensional scaling: History, theory, and applications. In R. M. Hamer (Ed.), Multidimensional scaling: History, theory, and applications. Hillsdale: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cody S. Ding
    • 1
    • 2
  1. 1.Department of Education Science and Professional ProgramUniversity of Missouri-St. LouisSt. LouisUSA
  2. 2.Center for NeurodynamicsUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations