Advertisement

Electrospun Filters for Oil–Water Separation

  • Mohammad Mahdi A. Shirazi
  • Morteza Asghari
Chapter

Abstract

The separation of oil from water in emulsions is a challenging and costly problem in several industrial sectors. Oil–water separation using electrospun fibers is a relatively new but highly promising technique. Highly specific surface areas, interconnected pore structures, and the potential to incorporate active chemistry on a nanoscale surface have made the electrospun fibers a promising versatile platform for the treatment of oily wastewaters. In this chapter, we summarize the applications and recent developments of electrospun filters and membranes for oil–water separation. First, conventional processes and materials for oily wastewater treatment are summarized. Then, the electrospinning technique, important operating parameters, properties of electrospun fibers for oil–water separation, and filtration mechanisms are introduced. Afterward, applications of electrospun fibers for oil–water separation, including coalescing filtration and membrane separation for oily wastewater treatment, are comprehensively discussed. Finally, the challenges and perspectives for the future of this subject are discussed.

Keywords

Electrospinning Oil–water separation Filter Membrane Coalescing Wastewater treatment 

References

  1. 1.
    Shirazi MMA, Kargari A (2015) A review on applications of membrane distillation (MD) process for wastewater treatment. J Membr Sci Res 1:101–112Google Scholar
  2. 2.
    Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Awang Biak DR, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kargari A, Shirazi MMA (2014) Applications of membrane separation technology for oil and gas produced water treatment. In: Advances in petroleum engineering (vol. 1: Refining). Studium Press LLC, HoustonGoogle Scholar
  4. 4.
    Diya’uddeen BH, Daud WMAW, Aziz ARA (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ Prot 89:95–105CrossRefGoogle Scholar
  5. 5.
    Lin H, Gao W, Meng F, Liao BQ, Leung KT, Zhao L, Chen J, Hong H (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Critical Rev Environ Sci Technol 42:677–740CrossRefGoogle Scholar
  6. 6.
    Gadipelli C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53:11571–11592CrossRefGoogle Scholar
  7. 7.
    Hassan AN, Nelson BK (2012) Invited review: anaerobic fermentation of dairy food wastewater. J Dairy Sci 95:6188–6203PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Beyer J, Trannum HC, Bakke T, Hodson PV, Collier TK (2016) Environmental effects of the Deepwater Horizon oil spill: a review. Mar Pollut Bull 110:28–51PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pezeshki SR, Hester MW, Lin Q, Nyman JA (2000) The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environ Pollut 108:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Spaulding ML (2017) State of the art review and future directions in oil spill modeling. Mar Pollut Bull 115:7–19PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yu L, Han M, He F (2013) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922.  https://doi.org/10.1016/j.arabjc.2013.07.020 CrossRefGoogle Scholar
  12. 12.
    Zhou YB, Tang XY, Hu XM, Fritschi S, Lu J (2008) Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep Purif Technol 63:400–406CrossRefGoogle Scholar
  13. 13.
    Jamaly S, Giwa A, Hasan SW (2015) Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J Environ Sci 37:15–30CrossRefGoogle Scholar
  14. 14.
    Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/floatation processes. J Environ Manag 90:1663–1679CrossRefGoogle Scholar
  15. 15.
    Golestanbagh M, Parvini M, Pendashteh A (2016) Integrated systems for oilfield produced water treatment: the state of the art. Energy Sources A 38:3404–3411CrossRefGoogle Scholar
  16. 16.
    Moussa DT, El-Naas MH, Nasser M, Al-Marri MJ (2017) A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manag 186:24–41CrossRefGoogle Scholar
  17. 17.
    Padaki M, Murali RS, Abdullah MS, Misdam N, Moslehyani A, Kassim MA, Hilal N, Ismail AF (2015) Membrane technology enhancement in oil-water separation. A review. Desalination 357:197–207CrossRefGoogle Scholar
  18. 18.
    Pintor AMA, Vilar VJP, Botelho CMS, Boaventura RAR (2016) Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem Eng J 297:229–255CrossRefGoogle Scholar
  19. 19.
    Munirasu S, Haija MA, Banat F (2016) Use of membrane technology for oil field and refinery produced water treatment-a review. Process Saf Environ Prot 100:183–202CrossRefGoogle Scholar
  20. 20.
    Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460CrossRefGoogle Scholar
  21. 21.
    Shirazi MMA, Kargari A, Tabatabaei M (2014a) Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation. Chem Eng Process 76:16–25CrossRefGoogle Scholar
  22. 22.
    Ray SS, Chen SS, Li CW, Nguyen NC, Nguyen HT (2016) A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv 6:85495–85514CrossRefGoogle Scholar
  23. 23.
    Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95CrossRefGoogle Scholar
  24. 24.
    Ahmed F, Lalia BS, Kochkodan V, Hilal N, Hashaikeh R (2016) Electrically conductive polymeric membranes for fouling prevention and detection: a review. Desalination 391:1–15CrossRefGoogle Scholar
  25. 25.
    Bet-moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46CrossRefGoogle Scholar
  26. 26.
    Otitoju TA, Amad AL, Ooi BS (2016) Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: a performance review. J Water Process Eng 14:41–59CrossRefGoogle Scholar
  27. 27.
    Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456CrossRefGoogle Scholar
  28. 28.
    Zheng X, Zhang Z, Yu D, Chen X, Cheng R, Min S, Wang J, Xiao Q, Wang J (2015) Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply. Resour Conserv Recycl 105:1–10CrossRefGoogle Scholar
  29. 29.
    Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12:2186–2202PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12:2125–2127CrossRefGoogle Scholar
  31. 31.
    Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16:7777–7782CrossRefGoogle Scholar
  32. 32.
    Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11:193–202CrossRefGoogle Scholar
  33. 33.
    Shirazi MMA, Kargari A, Bazgir S, Tabatabaei M, Shirazi MJA, Abdullah MS, Matsuura T, Ismail AF (2013) Characterization of electrospun polystyrene membrane for treatment of biodiesel’s water-washing effluent using atomic force microscopy. Desalination 329:1–8CrossRefGoogle Scholar
  34. 34.
    Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. Appl Mater Interfaces 4:3207–3212CrossRefGoogle Scholar
  35. 35.
    Sarbatly R, Krishnaiah D, Kamin Z (2016) A review of polymer nanofibers by electrospinning and their application in oil-water separation for cleaning up marine oil spills. Mar Pollut Bull 106:8–18PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299CrossRefGoogle Scholar
  37. 37.
    Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhou X (2012) Superhydrophilic-superhydrophobic coatings. J Mater Chem 22:2834–2837CrossRefGoogle Scholar
  38. 38.
    Liu K, Jiang L (2011) Metallic surfaces with special wettability. Nanoscale 3:825–838PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014CrossRefGoogle Scholar
  40. 40.
    Wang F, Lei S, Li C, Ou J, Xue M, Li W (2014) Superhydrophobic Cu mesh combined with a superoleophilic polyurethane sponge for oil spill adsorption and collection. Ind Eng Chem Res 53:7141–7148CrossRefGoogle Scholar
  41. 41.
    Yang J, Tang Y, Xu J, Chen B, Tang H, Li C (2015) Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surf Coat Technol 272:285–290CrossRefGoogle Scholar
  42. 42.
    Lee CH, Johnson N, Drelich J, Yap YK (2011) The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water-oil filtration. Carbon 49:669–676CrossRefGoogle Scholar
  43. 43.
    Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25:4192–4198PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Liu N, Chen Y, Lu F, Cao Y, Xue Z, Li K, Feng L, Wei Y (2013) Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. ChemPhysChem 14:3489–3494PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wang B, Guo Z (2013) pH-responsive bidirectional oil-water separation material. Chem Commun 49:9416–9418CrossRefGoogle Scholar
  46. 46.
    Wang B, Li J, Wang G, Liang W, Zhang Y, Shi L, Guo Z, Liu W (2013) Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation. ACS Appl Mater Interfaces 5:1823–1839Google Scholar
  47. 47.
    Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208–7214PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058.  https://doi.org/10.1039/C7TA02070H CrossRefGoogle Scholar
  49. 49.
    Ramakrishna S, Shirazi MMA (2015) Electrospun membranes: next generation membranes for desalination and water/wastewater treatment. J Membr Sci Res 1:46–47Google Scholar
  50. 50.
    Shirazi MMA, Kargari A, Ramakrishna S, Doyle J, Rajendarian M, Babu PR (2017) Electrospun membranes for desalination and water/wastewater treatment: a comprehensive review. J Membr Sci 3:209–227Google Scholar
  51. 51.
    Kulkarni A, Bambole VA, Mahanwar PA (2010) Electrospinning of polymers, their modeling and applications. Polym Plast Technol Eng 49:427–441CrossRefGoogle Scholar
  52. 52.
    Sas I, Gorga R, Joines J, Thoney KA (2012) Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polymer Sci B 50:824–845CrossRefGoogle Scholar
  53. 53.
    Tijing LD, Choi JS, Lee S, Kim SH, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462CrossRefGoogle Scholar
  54. 54.
    Konwarch R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31:421–437CrossRefGoogle Scholar
  55. 55.
    McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767CrossRefGoogle Scholar
  56. 56.
    Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  57. 57.
    Kang G, Cao Y (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes-a review. J Membr Sci 463:145–165CrossRefGoogle Scholar
  58. 58.
    Su CI, Shih JH, Huang MS, Wang CM, Shih WC, Liu YS (2012) A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation. Fibers Polym 13:698–702CrossRefGoogle Scholar
  59. 59.
    Chen B, Qiu J, Sakai E, Kanazawa N, Liang R, Feng H (2016) Robust and superhydrophobic surface modification by a “paint + adhesive” method: applications in self-cleaning after oil contamination and oil-water separation. ACS Appl Mater Interfaces 8:17659–17667PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ahmed FE, Lalia BS, Hashaikeh R (2017) Membrane-based detection of wetting phenomenon in direct contact membrane distillation. J Membr Sci 535:89–93CrossRefGoogle Scholar
  61. 61.
    Mirtalebi E, Shirazi MMA, Kargari A, Tabatabaei M, Ramakrishna S (2014) Assessment of atomic force and scanning electron microscopes for characterization of commercial and electrospun nylon membranes for coke removal from wastewater. Desalin Water Treat 52:6611–6619CrossRefGoogle Scholar
  62. 62.
    Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30CrossRefGoogle Scholar
  63. 63.
    Eykens L, De Sitter K, Dotremond C, Pinoy L, Van der Bruggen B (2017) Membrane synthesis for membrane distillation: a review. Sep Purif Technol 182:36–51CrossRefGoogle Scholar
  64. 64.
    Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254CrossRefGoogle Scholar
  65. 65.
    Islam MS, McCutcheon JR, Rahaman MS (2017) A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J Membr Sci 537:297–309CrossRefGoogle Scholar
  66. 66.
    Ashrafizadeh SN, Motaee E, Hoshyargar V (2012) Emulsification of heavy crude oil in water by natural surfactants. J Pet Sci Eng 86:137–143CrossRefGoogle Scholar
  67. 67.
    Eow JS, Ghadiri M (2002) Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem Eng J 85:357–368CrossRefGoogle Scholar
  68. 68.
    Hakansson A (2016) Experimental methods for measuring coalescence during emulsification-a critical review. J Food Eng 178:47–59CrossRefGoogle Scholar
  69. 69.
    ACS Report, Liquid-liquid coalesce design manual, ACS Industries LP, USA (Report code: 800-231-007) (http://people.clarkson.edu/~wwilcox/Design/coalesc.pdf)
  70. 70.
    Li J, Gu Y (2005) Coalescence of oil-in-water emulsions in fibrous and granular beds. Sep Purif Technol 42:1–13CrossRefGoogle Scholar
  71. 71.
    Sokolovic RMS, Govedarica DD, Sokolovic DS (2010) Separation of oil-in-water emulsion using two coalescers of different geometry. J Hazard Mater 175:1001–1006PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sokolovic RMS, Vulic TJ, Sokolovic SM (2007) Effect of length on steady-state coalescence of oil-in-water emulsion. Sep Purif Technol 56:79–84CrossRefGoogle Scholar
  73. 73.
    Hong A, Fane AG, Burford R (2003) Factors affecting membrane coalescence of stable oil-in-water emulsions. J Membr Sci 222:19–39CrossRefGoogle Scholar
  74. 74.
    Shirazi MJA, Bazgir S, Shirazi MMA, Ramakrishna S (2013b) Coalescing filtration of oily wastewaters: characterization and application of thermal treated, electrospun polystyrene filters. Desalin Water Treat 51:5974–5986CrossRefGoogle Scholar
  75. 75.
    Shin C, Chase GG (2006) Separation of water-in-oil emulsions using glass fiber media augmented with polymer nanofibers. J Dispers Sci Technol 27:517–522CrossRefGoogle Scholar
  76. 76.
    Shin C (2006) Filtration application from recycled expanded polystyrene. J Colloid Interface Sci 302:267–271PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Shin C, Chase GG, Reneker DH (2005a) Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf A Physicochem Eng Asp 262:211–215CrossRefGoogle Scholar
  78. 78.
    Shin C, Chase GG, Reneker DH (2005b) The effect of nanofibers on liquid-liquid coalescence filter performance. AICHE J 51:3109–3113CrossRefGoogle Scholar
  79. 79.
    Shin C, Chase GG (2005) Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym Bull 55:209–215CrossRefGoogle Scholar
  80. 80.
    Shin C, Chase GG (2004) Water-in-oil coalescence in micro-nanofiber composite filters. AICHE J 50:343–350CrossRefGoogle Scholar
  81. 81.
    Shirazi MJA, Bazgir S, Shirazi MMA (2014b) Edible oil mill effluent; a low-cost source for economizing biodiesel production: electrospun nanofibrous coalescing filtration approach. Biofuel Res J 1:39–42CrossRefGoogle Scholar
  82. 82.
    Rad SN, Shirazi MMA, Kargari A, Marzban R (2016) Application of membrane separation technology in downstream processing of Bacillus thuringiensis biopesticide: a review. J Membr Sci Res 2:66–77Google Scholar
  83. 83.
    Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138CrossRefGoogle Scholar
  84. 84.
    Khulbe KC, Matsuura T (2017) Recent progresses in preparation and characterization of RO membranes. J Membr Sci Res 3:174–186.  https://doi.org/10.22079/jmsr.2016.22147 CrossRefGoogle Scholar
  85. 85.
    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRefGoogle Scholar
  86. 86.
    Sundarrajan S, Ramakrishna S (2013) New directions in nanofiltration applications-are nanofibers the right materials as membranes in desalination? Desalination 308:198–208CrossRefGoogle Scholar
  87. 87.
    Zhai TL, Du Q, Xu S, Wang Y, Zhang C (2017) Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. RCS Adv 7:22548–22552Google Scholar
  88. 88.
    Cheng B, Li Z, Li Q, Ju J, Kang W, Naebe M (2017) Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. J Membr Sci 534:1–8CrossRefGoogle Scholar
  89. 89.
    Zhang J, Pan X, Xue Q, He D, Zhu L, Guo Q (2017a) Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion. J Membr Sci 532:38–46CrossRefGoogle Scholar
  90. 90.
    Zhang J, Xue Q, Pan X, Jin Y, Lu W, Ding D (2017b) Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem Eng J 307:643–649CrossRefGoogle Scholar
  91. 91.
    Lv R, Yin M, Zheng W, Na B, Wang B (2017) Poly(vinylidene fluoride) fibrous membranes doped with polyamide 6 for highly efficient separation of a stable oil/water emulsion. J Appl Polym Sci 134:44980–44985Google Scholar
  92. 92.
    Obaid M, Barakat NAMAA, Khalil KA (2015) Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem Eng J 259:449–456CrossRefGoogle Scholar
  93. 93.
    Yuan T, Meng J, Hao T, Wang Z, Zhang Y (2015) A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS Appl Mater Interfaces 7:14896–14904PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zhou Z, Wu XF (2015) Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Mater Lett 160:423–427CrossRefGoogle Scholar
  95. 95.
    Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J (2015) CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem 127:9062–9066CrossRefGoogle Scholar
  96. 96.
    Li JJ, Zhu LT, Luo ZH (2016) Electrospun fibrous membrane with enhanced switchable oil/water wettability for oily water separation. Chem Eng J 287:474–481CrossRefGoogle Scholar
  97. 97.
    Viswanadam G, Chase GG (2013) Water-diesel secondary dispersion separation using superhydrophobic tubes of nanofibers. Sep Purif Technol 104:81–88CrossRefGoogle Scholar
  98. 98.
    Gao W, Liang H, Ma J, Han M, Chen ZL, Han ZS, Li GB (2011) Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272:1–8CrossRefGoogle Scholar
  99. 99.
    Guo W, Ngo HH, Li J (2012) A mini-review on membrane fouling. Bioresour Technol 122:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerization – a review. Eur Polym J 48:1646–1659CrossRefGoogle Scholar
  101. 101.
    Hokkanen S, Bhatnagar A, Sillanpaa M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16CrossRefGoogle Scholar
  103. 103.
    Kochkodan V, Hilal N (2015) A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356:187–207CrossRefGoogle Scholar
  104. 104.
    Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes – a review of methods. Prog Mater Sci 58:76–150CrossRefGoogle Scholar
  105. 105.
    Khulbe KC, Feng C, Matsuura T (2010) The art of surface modification of synthetic polymeric membranes. J Appl Polym Sci 115:855–895CrossRefGoogle Scholar
  106. 106.
    Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Separation Processes Research Group (SPRG), Department of Chemical EngineeringUniversity of KashanKashanIran
  2. 2.Membrane Industry Development InstituteTehranIran

Personalised recommendations