Advertisement

Electrospun Filters for Organic Pollutants Removal

  • Anitha Senthamizhan
  • Brabu Balusamy
  • Tamer Uyar
Chapter

Abstract

Increasing demand for access to clean and safe water around the globe emphasizes the development of new technologies for removing environmental pollutants. Especially, organic pollutants including dyes, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), pesticides, herbicides, and antibiotics prominently affect environmental health due to their hazardous nature. In the past several decades, advancements in electrospun fibrous membranes have resulted as an efficient filtering platform for removal of various pollutants in water, air, and soil. Electrospun nanofibers are efficient filters complementing their unique feature of accommodating a variety of functional molecules. The choice of material and the effect of experimental condition including pH, contact time, and adsorbent dosage on pollutant removal efficiency have been extensively reviewed previously. Our chapter focuses on recent progress in the developments of the electrospun functional nanofibrous composite membrane for various organic pollutants removal.

Keywords

Electrospinning Nanofibers Composites Organic pollutants Filtration 

References

  1. 1.
    Wen Y, Schoups G, van de Giesen N (2017) Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci Rep 7:43289CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRefPubMedGoogle Scholar
  3. 3.
    Li QQ, Loganath A, Chong YS (2006) Persistent organic pollutants and adverse health effects in humans. J Toxicol Environ Health A 69:1987–2005CrossRefPubMedGoogle Scholar
  4. 4.
    Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026CrossRefGoogle Scholar
  5. 5.
    Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183CrossRefGoogle Scholar
  6. 6.
    Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Y, Wu B, Xu H et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39CrossRefGoogle Scholar
  8. 8.
    Bethi B, Sonawane SH, Bhanvase BA et al (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process 109:178–189CrossRefGoogle Scholar
  9. 9.
    Adeleye AS, Conway JR, Garner K et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662CrossRefGoogle Scholar
  10. 10.
    Yoon K, Hsiao B, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326–5334CrossRefGoogle Scholar
  11. 11.
    Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issue. Mater Today 9:40–50CrossRefGoogle Scholar
  12. 12.
    Senthamizhan A, Balusamy B, Aytac Z et al (2016) Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalyst. CrystEngComm 18:6341–6351CrossRefGoogle Scholar
  13. 13.
    Kayaci F, Vempati S, Ozgit-Akgun C et al (2014) Enhanced photocatalytic activity of homoassembled zno nanostructures on electrospun polymeric nanofibres: a combination of atomic layer deposition and hydrothermal growth. Appl Catal B 156–157:173–183CrossRefGoogle Scholar
  14. 14.
    Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:285–1306Google Scholar
  15. 15.
    Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  16. 16.
    Anitha S, Brabu B, Thiruvadigal DJ et al (2012) Preparation of free-standing electrospun composite ZnO membrane for antibacterial applications. Adv Sci Lett 5:468–474CrossRefGoogle Scholar
  17. 17.
    Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207CrossRefPubMedGoogle Scholar
  18. 18.
    Senthamizhan A, Balusamy B, Celebioglu A et al (2016) “Nanotraps” in porous electrospun fibers for effective removal of lead (II) in water. J Mater Chem A 4:2484–2493CrossRefGoogle Scholar
  19. 19.
    Wang P, Wang Y, Tong L (2013) Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci Appl 2:e102CrossRefGoogle Scholar
  20. 20.
    Leung WH, Lo WH, Chan PH (2015) Amyloid fibrils as rapid and efficient nano-biosorbents for removal of dye pollutants. RSC Adv 5:90022–90030CrossRefGoogle Scholar
  21. 21.
    Ahmad A, Mohd-Setapar SH, Chuong CS et al (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5:30801–30818CrossRefGoogle Scholar
  22. 22.
    Natarajan S, Bajaj HC, Tayade RJ (2017) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci.  https://doi.org/10.1016/j.jes.2017.03.011
  23. 23.
    Dabrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93:135–224CrossRefGoogle Scholar
  24. 24.
    Chaúque EFC, Dlamini LN, Adelodun AA et al (2016) Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Phys Chem Earth.  https://doi.org/10.1016/j.pce.2016.10.008
  25. 25.
    Zarrini K, Rahimi AA, Alihosseini F et al (2017) Highly efficient dye adsorbent based on polyaniline-coated nylon-6 nanofibers. J Clean Prod 142:3645–3654CrossRefGoogle Scholar
  26. 26.
    Bhaumik M, McCrindle R, Maity A (2013) Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibers. Chem Eng J 228:506–515CrossRefGoogle Scholar
  27. 27.
    Qureshi UA, Khatri Z, Ahmed F et al (2017) Electrospun zein nanofiber as green and recyclable adsorbent for the removal of reactive black 5 from aqueous phase. ACS Sustain Chem Eng.  https://doi.org/10.1021/acssuschemeng.7b00402
  28. 28.
    Patel S, Hota G (2014) Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane. Fibers Polym 15:2272–2282CrossRefGoogle Scholar
  29. 29.
    Miao YE, Wang R, Chen D et al (2012) Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH(Boehmite) core/sheath fibers for water remediation. ACS Appl Mater Interfaces 4:5353–5359CrossRefPubMedGoogle Scholar
  30. 30.
    Chen D, Liu C, Chen S et al (2016) Controlled synthesis of recyclable, porous FMO/C@TiO2 core–shell nanofibers with high adsorption and photocatalysis properties for the efficient treatment of dye waste water. ChemPlusChem 81:282–291CrossRefGoogle Scholar
  31. 31.
    Li S, Jia Z, Li Z (2016) Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Adv Powder Technol 27:591–598CrossRefGoogle Scholar
  32. 32.
    Batool SS, Imran Z, Hassan S (2016) Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers. Solid State Sci 55:13–20CrossRefGoogle Scholar
  33. 33.
    Im K, Nguyen DN, Kim S (2017) Graphene-embedded hydrogel nanofibers for detection and removal of aqueous-phase dyes. ACS Appl Mater Interfaces 9:10768–10776CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Y, Ding W, Jiao X et al (2014) Electrospun flexible self-standing silica/mesoporous alumina core–shell fibrous membranes as adsorbents toward Congo red. RSC Adv 4:30790–30797CrossRefGoogle Scholar
  35. 35.
    Patel S, Hota G (2016) Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv 6:15402–15414CrossRefGoogle Scholar
  36. 36.
    Uyar T, Havelund R, Nur Y et al (2009) Molecular filters based on cyclodextrin functionalized electrospun fibers. J Membrane Sci 332:129–137CrossRefGoogle Scholar
  37. 37.
    Uyar T, Havelund R, Hacaloglu J et al (2010) Functional electrospun polystyrene nanofibers incorporating alpha, beta and gamma cyclodextrins: comparison of molecular filter performance. ACS Nano 4:5121–5130CrossRefPubMedGoogle Scholar
  38. 38.
    Egede EJ, Jones H, Cook B et al (2016) Application of microalgae and fungal-microalgal associations for wastewater treatment. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology, springer international publishing, Switzerland, pp 143–181CrossRefGoogle Scholar
  39. 39.
    Sarioglu OF, San Keskin NO, Celebioglu A et al (2017) Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf B Biointerfaces 152:245–251CrossRefPubMedGoogle Scholar
  40. 40.
    Salalha W, Kuhn J, Dror Y et al (2006) Encapsulation of bacteria and viruses in electrospun nanofibers. Nanotechnology 17:4675–4681CrossRefPubMedGoogle Scholar
  41. 41.
    Maurya NS, Mittal AK, Cornel P et al (2006) Biosorption of dyes using dead macro fungi: effect of dye structure: ionic strength and pH. Bioresour Technol 97:512–521CrossRefPubMedGoogle Scholar
  42. 42.
    Sarioglu OF, Celebioglu A, Tekinay T et al (2015) Evaluation of contact time and fiber morphology on bacterial immobilization for development of novel surfactant degrading nanofibrous webs. RSC Adv 5:102750–102758CrossRefGoogle Scholar
  43. 43.
    San NO, Celebioglu A, Tumtas Y et al (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4:32249–32255CrossRefGoogle Scholar
  44. 44.
    San Keskin NO, Celebioglu A, Uyar T et al (2015) Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809CrossRefGoogle Scholar
  45. 45.
    Kim KH, Jahan SA, Kabir E (2013) A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41–52CrossRefPubMedGoogle Scholar
  46. 46.
    De Crom J, Claeys S, Godayol A et al (2010) Sorbent-packed needle microextraction trap for benzene, toluene, ethylbenzene, and xylenes determination in aqueous samples. J Sep Sci 33:2833–2840CrossRefPubMedGoogle Scholar
  47. 47.
    Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101CrossRefGoogle Scholar
  48. 48.
    Konieczny K, Bodzek M, Panek D (2008) Removal of volatile compounds from the wastewaters by use of pervaporation. Desalination 223:344–348CrossRefGoogle Scholar
  49. 49.
    Son YS (2017) Decomposition of VOCs and odorous compounds by radiolysis: a critical review. Chem Eng J 316:609–622CrossRefGoogle Scholar
  50. 50.
    Hirota K, Sakai H, Washio M et al (2004) Application of electron beams for the treatment of VOC streams. Ind Eng Chem Res 43:1185–1191CrossRefGoogle Scholar
  51. 51.
    Hakim M, Broza YY, Barash O et al (2012) Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev 112:5949–5966CrossRefPubMedGoogle Scholar
  52. 52.
    Delfino RJ, Gong H, Linn WS et al (2003) Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J Expo Anal Environ Epidemiol 13:348–363CrossRefPubMedGoogle Scholar
  53. 53.
    Gałęzowska G, Chraniuk M, Wolska L (2016) In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: a critical review. TrAC Trends Anal Chem 77:14–22CrossRefGoogle Scholar
  54. 54.
    Al-Dawery S (2013) Methanol removal from methanol-water mixture using municipal activated sludge. J Eng Sci Technol 8:578–587Google Scholar
  55. 55.
    Aliabadi M, Aroujalian A, Raisi A (2012) Removal of styrene from petrochemical wastewater using pervaporation process. Desalination 284:116–121CrossRefGoogle Scholar
  56. 56.
    Kujawa J, Cerneaux S, Kujawski W (2015) Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation. Chem Eng J 260:43–54CrossRefGoogle Scholar
  57. 57.
    Son YS, Kim P, Park JH et al (2013) Decomposition of trimethylamine by an electron beam. Plasma Chem Plasma Process 33:1099–1109CrossRefGoogle Scholar
  58. 58.
    Vane LM, Alvarez FR (2002) Full-scale vibrating pervaporation membrane unit: VOC removal from water and surfactant solutions. J Membr Sci 202:177–193CrossRefGoogle Scholar
  59. 59.
    Delimaris D, Ioannides T (2008) VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Appl Catal B Environ 84:303–312CrossRefGoogle Scholar
  60. 60.
    Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232–248CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221CrossRefGoogle Scholar
  62. 62.
    Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostruct Chem 6:207–213CrossRefGoogle Scholar
  63. 63.
    Zhu M, Han J, Wang F et al (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302:1600353CrossRefGoogle Scholar
  64. 64.
    Haider A, Haider S, Kang IK (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2015.11.015
  65. 65.
    Sundarrajan S, Tan KL, Lim SH et al (2014) Electrospun nanofibers for air filtration applications. Procedia Eng 75:159–163CrossRefGoogle Scholar
  66. 66.
    Sahay R, Kumar PS, Sridhar R et al (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953–12971CrossRefGoogle Scholar
  67. 67.
    Chu L, Deng S, Zhao R et al (2015) Adsorption/desorption performance of volatile organic compounds on electrospun nanofibers. RSC Adv 5:102625–102632CrossRefGoogle Scholar
  68. 68.
    Shim WG, Kim C, Lee JW et al (2006) Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci 102:2454–2462CrossRefGoogle Scholar
  69. 69.
    Bai Y, Huang ZH, Wang MX et al (2013) Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning. Adsorption 19:1035–1043CrossRefGoogle Scholar
  70. 70.
    Scholten E, Bromberg L, Rutledge GC et al (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces 3:3902–3909CrossRefPubMedGoogle Scholar
  71. 71.
    Feng C, Khulbe KC, Tabe S (2012) Volatile organic compound removal by membrane gas stripping using electro-spun nanofiber membrane. Desalination 287:98–102CrossRefGoogle Scholar
  72. 72.
    Guo Z, Huang J, Xue Z et al (2016) Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone. Chem Eng J 306:99–106CrossRefGoogle Scholar
  73. 73.
    Uyar T, Havelund R, Nur Y et al (2010) Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. J Membr Sci 365:409–417CrossRefGoogle Scholar
  74. 74.
    Kayaci F, Uyar T (2014) Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci 54:2970–2978CrossRefGoogle Scholar
  75. 75.
    Kayaci F, Sen HS, Durgun E et al (2015) Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. J Appl Polym Sci 132:41941CrossRefGoogle Scholar
  76. 76.
    Celebioglu A, Uyar T (2013) Electrospun gamma-cyclodextrin (γ-CD) nanofibers for the entrapment of volatile organic compounds. RSC Adv 3:22891–22895CrossRefGoogle Scholar
  77. 77.
    Celebioglu A, Sen HS, Durgun E et al (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744CrossRefPubMedGoogle Scholar
  78. 78.
    Kim HJ, Pant HR, Choi NJ et al (2013) Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air. Chem Eng J 230:244–250CrossRefGoogle Scholar
  79. 79.
    Ge JC, Kim JH, Choi NJ (2016) Electrospun polyurethane/loess powder hybrids and their absorption of volatile organic compounds. Adv Mater Sci Eng 2016:8521259CrossRefGoogle Scholar
  80. 80.
    Ge JC, Choi N (2017) Fabrication of functional polyurethane/rare earth nanocomposite membranes by electrospinning and its VOCs absorption capacity from air. Nano 7:60Google Scholar
  81. 81.
    Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefPubMedGoogle Scholar
  82. 82.
    Kaushik CP, Haritash AK (2006) Polycyclic aromatic hydrocarbons (PAHs) and environmental health. Our Earth 3:1–7Google Scholar
  83. 83.
    Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248CrossRefGoogle Scholar
  84. 84.
    Kim KH, Jahan SA, Kabir E et al (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80CrossRefPubMedGoogle Scholar
  85. 85.
    Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38CrossRefPubMedGoogle Scholar
  86. 86.
    Jarvis IW, Dreij K, Mattsson Å et al (2014) Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 321:27–39CrossRefPubMedGoogle Scholar
  87. 87.
    Rubio-Clemente A, Torres-Palma RA, Peñuela GA (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225CrossRefPubMedGoogle Scholar
  88. 88.
    Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123CrossRefGoogle Scholar
  89. 89.
    Paszkiewicz M, Caban M, Bielicka-Giełdoń A et al (2017) Optimization of a procedure for the simultaneous extraction of polycyclic aromatic hydrocarbons and metal ions by functionalized and non-functionalized carbon nanotubes as effective sorbents. Talanta 165:405–411CrossRefPubMedGoogle Scholar
  90. 90.
    Li J, Zhou QX, Liu YL et al (2017) Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene. Sci Technol Adv Mater 18:3–16CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Qi D, Kang X, Chen L et al (2008) Electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trace pollutants in environmental water. Anal Bioanal Chem 390:929–938CrossRefPubMedGoogle Scholar
  93. 93.
    Dai Y, Niu J, Yin L et al (2011) Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes: sorption kinetics and mechanism. J Hazard Mater 192:1409–1417CrossRefPubMedGoogle Scholar
  94. 94.
    Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45:10611–10618CrossRefPubMedGoogle Scholar
  95. 95.
    Dai Y, Niu J, Yin L et al (2013) Laccase-carrying electrospun fibrous membrane for the removal of polycyclic aromatic hydrocarbons from contaminated water. Sep Purif Technol 104:1–8CrossRefGoogle Scholar
  96. 96.
    Kayaci F, Aytac Z, Uyar T (2013) Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J Hazard Mater 261:286–294CrossRefPubMedGoogle Scholar
  97. 97.
    Celebioglu A, Demirci S, Uyar T (2014) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “click” reaction for removal of phenanthrene. Appl Surf Sci 305:581–588CrossRefGoogle Scholar
  98. 98.
    Sui Q, Cao X, Lu S et al (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Contam 1:14–24CrossRefGoogle Scholar
  99. 99.
    Hao R, Xiao X, Zuo X et al (2012) Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 209–210:137–145CrossRefPubMedGoogle Scholar
  100. 100.
    Le-Minh N, Khan SJ, Drewes JE et al (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323CrossRefPubMedGoogle Scholar
  101. 101.
    Liu Q, Zhong LB, Zhao QB et al (2015) Synthesis of Fe3O4/Polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl Mater Interfaces 7:14573–14583CrossRefPubMedGoogle Scholar
  102. 102.
    Banks KE, Hunter DH, Wachal DJ (2005) Chlorpyrifos in surface waters before and after a federally mandated ban. Environ Int 31:351–356CrossRefPubMedGoogle Scholar
  103. 103.
    Lange LE, Ochanda FO, Obendorf SK et al (2014) CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers Polym 15:200–207CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anitha Senthamizhan
    • 1
  • Brabu Balusamy
    • 2
  • Tamer Uyar
    • 1
  1. 1.Institute of Materials Science and Nanotechnology, UNAM-National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  2. 2.Italian Institute of TechnologyGenovaItaly

Personalised recommendations