Advertisement

Electrospun Filters for Defense and Protective Applications

  • Rahul Sahay
Chapter

Abstract

Research has experienced a rapid growth for the development of protective textiles (PTs) for military personnel since World War II to protect from chemical and biological warfare agents (CBWAs). The aim has been to fabricate PTs having full-barrier protection by degrading or blocking CBWAs. Electrospun fibrous membranes (EFMs) have exhibited great potential for PTs by virtue of their high surface area per unit volume, high porosity, and ability to attach functional groups for intended applications. The new generation of PTs are intended not only to adsorb but also degrade CBWAs. The aim of this chapter is to study the usage of EFMs in designing a new generation of PTs that not only provide protection from CBWAs but also provide thermal comfort to the users.

This chapter starts with the motivation for usage of EFMs in PTs. The fabrication and performance of these PTs are systematically studied by analyzing research articles focused on EFM usage in PTs. The properties of these PTs are studied with respect to (a) thermal comfort, and (b) detoxification ability against CBWAs. At the end of this chapter, a section is devoted to the progress of smart PTs. These smart PTs are envisioned to have capabilities such as sensing, self-cleaning, energy harvesting/storage, and communication.

Keywords

Electrospinning Protective textiles Nerve gases Organophosphates Electrospun fibrous membranes 

References

  1. 1.
    Scott RA (2005) Textiles for protection. Woodhead Pub, SawstonGoogle Scholar
  2. 2.
    Bromberg L, Schreuder-Gibson H, Creasy WR et al (2009) Degradation of chemical warfare agents by reactive polymers. Ind Eng Chem Res 48:1650–1659.  https://doi.org/10.1021/ie801150y CrossRefGoogle Scholar
  3. 3.
    Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membr Sci 446:350–375.  https://doi.org/10.1016/j.memsci.2013.07.014 CrossRefGoogle Scholar
  4. 4.
    Dolez PI (2013) Smart barrier membranes for protective clothing. In: Smart textiles for protection. Elsevier, Amsterdam, pp 148–189CrossRefGoogle Scholar
  5. 5.
    Raza A, Li Y, Sheng J et al (2014) Protective clothing based on electrospun nanofibrous membranes. In: Electrospun nanofibers for energy and environmental applications. Springer, Berlin, pp 355–369CrossRefGoogle Scholar
  6. 6.
    Yoon B, Lee S (2011) Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fiber Polym 12:57–64.  https://doi.org/10.1007/s12221-011-0057-9 CrossRefGoogle Scholar
  7. 7.
    Deitzel JM, Beck Tan NC, Kleinmeyer JD, et al (1999) Generation of polymer nanofibers through electrospinning. Army Res Rep ARL-TR-198:1–41Google Scholar
  8. 8.
    Online Army Study Guide - Chemical, Biological, Radiological, Nuclear | ArmyStudyGuide.com. http://www.armystudyguide.com/content/army_board_study_guide_topics/cbrn/cbrn-study-guide.shtml. Accessed 19 Jul 2017
  9. 9.
    Sahay R, Teo CJ, Chew YT (2013) New correlation formulae for the straight section of the electrospun jet from a polymer drop. J Fluid Mech 735:150–175.  https://doi.org/10.1017/Jfm.2013.497 CrossRefGoogle Scholar
  10. 10.
    Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomater 2011:1–17.  https://doi.org/10.1155/2011/317673 CrossRefGoogle Scholar
  11. 11.
    Sahay R, Kumar PS, Sridhar R et al (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953.  https://doi.org/10.1039/c2jm30966a CrossRefGoogle Scholar
  12. 12.
    Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Eng Asp 187–188:469–481.  https://doi.org/10.1016/S0927-7757(01)00616-1 CrossRefGoogle Scholar
  13. 13.
    Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77:696–702.  https://doi.org/10.1177/0040517507080284 CrossRefGoogle Scholar
  14. 14.
    Ecobichon DJ (1999) Occupational hazards of pesticide exposure: sampling, monitoring, and measuring. Taylor & Francis, AbingdonGoogle Scholar
  15. 15.
    Davies HG, Richter RJ, Keifer M et al (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336.  https://doi.org/10.1038/ng1196-334 CrossRefPubMedGoogle Scholar
  16. 16.
    Taylor P (2010) The degradation of organophosphorus pesticides in natural waters: a the degradation of organophosphorus pesticides in natural waters: a critical review. Crit Rev Environ Sci Technol 32:17–72.  https://doi.org/10.1080/10643380290813444 CrossRefGoogle Scholar
  17. 17.
    Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164.  https://doi.org/10.1038/nrmicro2050 CrossRefPubMedGoogle Scholar
  18. 18.
    Voss G, Matsumura F (1964) Resistance to organophosphorus compounds in the two-spotted spider mite: two different mechanisms of resistance. Nature 202:319–320CrossRefPubMedGoogle Scholar
  19. 19.
    Yang Y, Baker J, Ward J (1992) Decontamination of chemical warfare agents. Chem Rev 92:1729–1743CrossRefGoogle Scholar
  20. 20.
    Mondloch JE, Katz MJ, Isley WC III et al (2015) Destruction of chemical warfare agents using metal–organic frameworks. Nat Mater 14:512–516.  https://doi.org/10.1038/nmat4238 CrossRefPubMedGoogle Scholar
  21. 21.
    Borak J, Sidell FR (1992) Agents of chemical warfare: sulfur mustard. Ann Emerg Med 21:303–308.  https://doi.org/10.1016/S0196-0644(05)80892-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607.  https://doi.org/10.1016/S0140-6736(07)61202-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Senić Ž, Bauk S, Vitorović-Todorović M et al (2011) Application of TiO2 nanoparticles for obtaining self-decontaminating smart textiles. Sci Tech Rev 61:63–72Google Scholar
  24. 24.
    Ultra-Web Media Technology - Dust Collector Filters - Donaldson Torit. http://www2.donaldson.com/torit/en-us/pages/products/ultra-webmediatechnology.aspx. Accessed 23 Jul 2017
  25. 25.
    Brock R, Meitner G (1977) Nonwoven thermoplastic fabric. US Pat. 4,041,203Google Scholar
  26. 26.
    Groitzsch D, Fahrbach E (1986) Microporous multilayer nonwoven material for medical applications. US Pat. 4,618,524Google Scholar
  27. 27.
    Huber O, Magidson M (1983) Disposable face mask. US Pat. 4,384,577Google Scholar
  28. 28.
    Saint-André G, Kliachyna M, Kodepelly S et al (2011) Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron 67:6352–6361.  https://doi.org/10.1016/j.tet.2011.05.130 CrossRefGoogle Scholar
  29. 29.
    Faust SD, Gomaa HM (1972) Chemical hydrolysis of some organic phosphorus and carbamate pesticides in aquatic environments. Environ Lett 3:171–201.  https://doi.org/10.1080/00139307209435465 CrossRefPubMedGoogle Scholar
  30. 30.
    Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768.  https://doi.org/10.1039/b505422b CrossRefGoogle Scholar
  32. 32.
    Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem Mater 8:1904–1912.  https://doi.org/10.1021/cm950583p CrossRefGoogle Scholar
  33. 33.
    Li YX, Koper O, Atteya M, Klabunde KJ (1992) Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. In situ GC-MS studies of pulsed microreactions over magnesium oxide. Chem Mater 4:323–330.  https://doi.org/10.1021/cm00020a019 CrossRefGoogle Scholar
  34. 34.
    Bunton C, Foroudian HJ, Gillitt ND (1999) Reduction ofo-iodosobenzoate ion by sulfides and its oxidative regeneration. J Phys Org Chem 12:758–764.  https://doi.org/10.1002/(SICI)1099-1395(199910)12:10<758::AID-POC200>3.0.CO;2-A CrossRefGoogle Scholar
  35. 35.
    Graham K, Schreuder-Gibson H, Gogins M (2003) Incorporation of electrospun nanofibers into functional structures. Construction 15–18Google Scholar
  36. 36.
    Chen L, Bromberg L, Lee JA et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22:1429–1436.  https://doi.org/10.1021/cm902834a CrossRefGoogle Scholar
  37. 37.
    Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50.  https://doi.org/10.1016/S1369-7021(06)71389-X CrossRefGoogle Scholar
  38. 38.
    Ramaseshan R, Sundarrajan S, Liu Y et al (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 17:2947–2953.  https://doi.org/10.1088/0957-4484/17/12/021 CrossRefGoogle Scholar
  39. 39.
    Ramaseshan R (2011) Decontamination of chemical warfare simulants using electrospun media. PhD Thesis, National University Singapore, pp 1–167Google Scholar
  40. 40.
    Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48:4675–4682.  https://doi.org/10.1016/j.polymer.2007.05.084 CrossRefGoogle Scholar
  41. 41.
    Chen L, Bromberg L, Schreuder-Gibson H et al (2009) Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats. J Mater Chem 19:2432–2438.  https://doi.org/10.1039/B818639a CrossRefGoogle Scholar
  42. 42.
    Becke GS, Carmody DJ, Dobosy MJ (2008) Microporous breathable film with internal barrier layer or layers. US20080131676 A1Google Scholar
  43. 43.
    Nooney MG, Campbell A, Murrell TS et al (1998) Nucleation and growth of phosphate on metal oxide thin films. Langmuir 14:2750–2755.  https://doi.org/10.1021/la9702695 CrossRefGoogle Scholar
  44. 44.
    Li M, Liu J, Xu Y, Qian G (2016) Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environ Rev 24:319–332.  https://doi.org/10.1139/er-2015-0080 CrossRefGoogle Scholar
  45. 45.
    Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with Nanosize MgO. J Phys Chem B 103:3225–3228.  https://doi.org/10.1021/jp984689u CrossRefGoogle Scholar
  46. 46.
    Kleinhammes A, Wagner GW, Kulkarni H et al (2005) Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls. Chem Phys Lett 411:81–85.  https://doi.org/10.1016/j.cplett.2005.05.100 CrossRefGoogle Scholar
  47. 47.
    Šťastný M, Štengl V, Henych J et al (2016) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51:2634–2642.  https://doi.org/10.1007/s10853-015-9577-9 CrossRefGoogle Scholar
  48. 48.
    Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671–2679.  https://doi.org/10.1021/la2050515 CrossRefPubMedGoogle Scholar
  49. 49.
    Silva VB, Rodrigues TS, Camargo PHC, Orth ES (2017) Detoxification of organophosphates using imidazole-coated Ag, Au and AgAu nanoparticles. RSC Adv 7:40711–40719.  https://doi.org/10.1039/c7ra07059d CrossRefGoogle Scholar
  50. 50.
    Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90:1836–1842.  https://doi.org/10.1111/j.1551-2916.2007.01633.x CrossRefGoogle Scholar
  51. 51.
    Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407.  https://doi.org/10.1007/s10853-007-1786-4 CrossRefGoogle Scholar
  52. 52.
    Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715.  https://doi.org/10.1021/bi0497805 CrossRefPubMedGoogle Scholar
  53. 53.
    Han D, Filocamo S, Kirby R, Steckl AJ (2011) Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning. ACS Appl Mater Interfaces 3:4633–4639.  https://doi.org/10.1021/am201064b CrossRefPubMedGoogle Scholar
  54. 54.
    Moss RA, Alwis KW, Bizzigotti GO (1983) o-Iodosobenzoate: catalyst for the micellar cleavage of activated esters and phosphates. J Am Chem Soc 105:681–682.  https://doi.org/10.1021/ja00341a092 CrossRefGoogle Scholar
  55. 55.
    Moss RA, Alwis KW, Shin JS (1984) Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates. J Am Chem Soc 106:2651–2655.  https://doi.org/10.1021/ja00321a027 CrossRefGoogle Scholar
  56. 56.
    Menger FM, Rourk MJ (1999) Deactivation of mustard and nerve agent models via low-temperature microemulsions. Langmuir 15:309–313.  https://doi.org/10.1021/la980910i CrossRefGoogle Scholar
  57. 57.
    Li Y-F, Ha Y-M, Guo Q, Li Q-P (2015) Synthesis of two β-cyclodextrin derivatives containing a vinyl group. Carbohydr Res 404:55–62.  https://doi.org/10.1016/j.carres.2014.11.012 CrossRefPubMedGoogle Scholar
  58. 58.
    Echavia GRM, Matzusawa F, Negishi N (2009) Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 76:595–600.  https://doi.org/10.1016/j.chemosphere.2009.04.055 CrossRefPubMedGoogle Scholar
  59. 59.
    Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113:20543–20552.  https://doi.org/10.1021/jp9061797 CrossRefGoogle Scholar
  60. 60.
    Hong KH, Park JL, Hwan Sul IN et al (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B Polym Phys 44:2468–2474.  https://doi.org/10.1002/polb.20913 CrossRefGoogle Scholar
  61. 61.
    Duan YY, Jia J, Wang SH et al (2007) Preparation of antimicrobial poly(e-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106:1208–1214.  https://doi.org/10.1002/app.26786 CrossRefGoogle Scholar
  62. 62.
    Haider A, Kwak S, Gupta KC, Kang IK (2015) Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 2015:1–10.  https://doi.org/10.1155/2015/832762 CrossRefGoogle Scholar
  63. 63.
    Yuan J, Geng J, Xing Z et al (2010) Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J Appl Polym Sci 116:668–672.  https://doi.org/10.1002/app.31632 CrossRefGoogle Scholar
  64. 64.
    Kim SJ, Nam YS, Rhee DM et al (2007) Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J 43:3146–3152.  https://doi.org/10.1016/j.eurpolymj.2007.04.046 CrossRefGoogle Scholar
  65. 65.
    Ignatova M, Starbova K, Markova N et al (2006) Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res 341:2098–2107.  https://doi.org/10.1016/j.carres.2006.05.006 CrossRefPubMedGoogle Scholar
  66. 66.
    Chen L (2009) Next generation of electrospun textiles for chemical and biological protection and air filtration. PhD Thesis, Massachusetts Institute of Technology, pp 1–165Google Scholar
  67. 67.
    Kent JA (2012) Handbook of industrial chemistry and biotechnology. Springer, Berlin, pp 1–1562CrossRefGoogle Scholar
  68. 68.
    Kiekens P, Jayaraman S (2012) Intelligent textiles and clothing for ballistic and NBC protection: technology at the cutting edge. Springer, Berlin, pp 1–220CrossRefGoogle Scholar
  69. 69.
    Rothschild A, Komem Y (2003) Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors. Sensors Actuators B Chem 93:362–369.  https://doi.org/10.1016/S0925-4005(03)00212-0 CrossRefGoogle Scholar
  70. 70.
    Wang J, Zhong Q, Wu J, Chen T (2014) Thermo-responsive textiles. In: Handbook of smart textiles. Springer, Singapore, pp 1–27Google Scholar
  71. 71.
    Križman Lavrič P, Warmoeskerken MMCG, Jocic D (2012) Functionalization of cotton with poly-NiPAAm/chitosan microgel. Part I. Stimuli-responsive moisture management properties. Cellulose 19:257–271.  https://doi.org/10.1007/s10570-011-9632-x CrossRefGoogle Scholar
  72. 72.
    Meldrum FC (2005) Biomineralisation processes. In: Surfaces interfaces biomater, pp 666–692.  https://doi.org/10.1533/9781845690809.4.666 CrossRefGoogle Scholar
  73. 73.
    Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660–2669.  https://doi.org/10.1002/app.10436 CrossRefGoogle Scholar
  74. 74.
    Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763.  https://doi.org/10.1016/j.progpolymsci.2012.06.001 CrossRefGoogle Scholar
  75. 75.
    Uchino K (2010) Advanced piezoelectric materials science and technology. Woodhead Publ, Sawston, pp 1–678Google Scholar
  76. 76.
    Fink JK (2012) Polymeric sensors and actuators. Wiley, Hoboken, pp 1–512Google Scholar
  77. 77.
    Liu YY, Wang RH, Lu HF et al (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17:1071–1078.  https://doi.org/10.1039/B613914k CrossRefGoogle Scholar
  78. 78.
    Banerjee S, Dionysiou D, Pillai S (2015) Self-cleaning applications of TiO2 by photo- induced hydrophilicity and photocatalysis. Appl Catal B Environ 176:396–428.  https://doi.org/10.1016/j.apcatb.2015.03.058 CrossRefGoogle Scholar
  79. 79.
    Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741.  https://doi.org/10.1016/j.ceramint.2015.03.094 CrossRefGoogle Scholar
  80. 80.
    Wu D, Long M, Zhou J et al (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Technol 203:3728–3733.  https://doi.org/10.1016/j.surfcoat.2009.06.008 CrossRefGoogle Scholar
  81. 81.
    Kaihong Qi K, Xiaowen Wang X, Xin JH (2011) Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J 81:101–110.  https://doi.org/10.1177/0040517510383618 CrossRefGoogle Scholar
  82. 82.
    Liu C, Qin H, Mather PT et al (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543.  https://doi.org/10.1039/b615954k CrossRefGoogle Scholar
  83. 83.
    Han HR, Chung SE, Park CH (2013) Shape memory and breathable waterproof properties of polyurethane nanowebs. Text Res J 83:76–82.  https://doi.org/10.1177/0040517512450757 CrossRefGoogle Scholar
  84. 84.
    Pretsch T (2010) Review on the functional determinants and durability of shape memory polymers. Polymers 2:120–158.  https://doi.org/10.3390/polym2030120 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomaterials and Microbiological Technology, Nanotechnology Centre, Faculty of Chemical Technology and EngineeringWest Pomeranian University of Technology SzczecinSzczecinPoland

Personalised recommendations