Advertisement

Electrospinning Technology for Filtering Membranes Fabrication

  • Vincenzo Guarino
  • Alessio Varesano
Chapter

Abstract

Filtration is simple, versatile, and economical means to recruit and confine sub-micrometric or nanometric particles and ions, that is, aerosol, water, and air pollutants—in order to provide a highly efficient process for air/water cleaning. Indeed, the growing amount of toxic particles with a large specific surface area, mainly related to increasing combustion emissions in the external environment, is drastically reducing population life quality, due to the ease of crossing human body barriers—through inhalation and absorption. In the last two decades, rapid improvements in nanotechnology are opening new perspectives for the development of innovative filters with permeability properties able to more efficaciously prevent the release of nanoparticles in the atmosphere, soil, or water environments. In particular, electrospinning is emerging as one of the most versatile and cost-effective technologies to design fibrous filtering devices, capable of removing sub-micrometric/nanometric-sized pollutants from gas streams, drastically improving the current efficiency of commercial filters (up to 90–99%). Herein, an overview of the current technological strategies based on electrospinning will be introduced in order to discuss future challenges and trends in the use of electrospun membranes as innovative nano-porous membranes for filtering applications.

Keywords

Nanofibers Polymers Fiber processing Porous membranes Filtration 

References

  1. 1.
    Daniel MK, Donald RC, Wenhua HZ, Kenneth CW, Nelms RM, Bruce JT (2007) Fuel cell cathode air filters: methodologies for design and optimization. J Power Sources 168:391–399CrossRefGoogle Scholar
  2. 2.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Dai J, Chen R, Meng X et al (2015) Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China. Environ Pollut 203:116–121PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wang Y, Ying Q, Hu J et al (2014) Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ Int 73:413–422PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4):266–284PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sanchez JR, Rodriguez JM, Alvaro A et al (1997) Comparative study of different fabrics in the filtration of an aerosol using more complete filtration indexes. Filtr Sep 34:593–598CrossRefGoogle Scholar
  7. 7.
    Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofibre filter under low Peclet number and transitional flow regime. Sep Purif Technol 79:34–42CrossRefGoogle Scholar
  8. 8.
    Wang H, Zheng G, Wang X et al (eds) (2010) Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In: 5th IEEE international conference on nano/micro engineered and molecular systems (NEMS). IEEE, London, UK, pp 387–390Google Scholar
  9. 9.
    US-EPA (1996) Air quality criteria for particulate matter. US Environmental Protection Agency, EPA/600/P-95/001F, Washington, DCGoogle Scholar
  10. 10.
    Brown RC (2001) Filtration in industrial hygiene. Am Ind Hyg Assoc J 62:633–643CrossRefGoogle Scholar
  11. 11.
    Qiu H, Tian L, Ho K et al (2015) Air pollution and mortality: effect modification by personal characteristics and specific cause of death in a case-only study. Environ Pollut 199:192–197PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibres in energy and environmental applications. Energy Environ Sci 1:205–221CrossRefGoogle Scholar
  13. 13.
    Wang N, Raza A, Si Y et al (2013) Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci 398:240–246PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gorji M, Jeddi A, Gharehaghaji A (2012) Fabrication and characterization of polyurethane electrospun nanofibre membranes for protective clothing applications. J Appl Polym Sci 125:4135–4141CrossRefGoogle Scholar
  15. 15.
    Schreuder-Gibson H, Gibson P et al (2002) Protective textile materials based on electrospun nanofibres. J Adv Mater 34:44–55Google Scholar
  16. 16.
    Desai K, Kit K, Li J et al (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669CrossRefGoogle Scholar
  17. 17.
    Aluigi A, Vineis C, Tonin C et al (2009) Wool keratin-based nanofibres for active filtration of air and water. J Biobased Mater Bioenergy 3:311–319CrossRefGoogle Scholar
  18. 18.
    Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Han DH, Kang MS (2009) A survey of respirators usage for airborne chemicals in Korea. Ind Health 47:569–577PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Huang X, Wang YJ, Di YH (2007) Experimental study of wool fibre on purification of indoor air. Text Res J 77:946–950CrossRefGoogle Scholar
  21. 21.
    Yao WL, Wang JL, Yang J, Du GD (2008) Novel carbon nanofibre-cobalt oxide composites for lithium storage with large capacity and high reversibility. J Power Sources 176(1):369–372CrossRefGoogle Scholar
  22. 22.
    Ju YW, Park JH, Jung HR, Cho SJ, Lee WJ (2008) Electrospun MnFe2O4 nanofibres: preparation and morphology. Compos Sci Technol 68(7–8):1704–1709CrossRefGoogle Scholar
  23. 23.
    Park SH, Kim C, Choi YO, Yang KS (2003) Preparations of pitch-based CF/ACF webs by electrospinning. Carbon 41(13):2655–2657CrossRefGoogle Scholar
  24. 24.
    Ahn C, Park SK, Kim GT et al (2006) Development of high efficiency nanofilters made of nanofibres. Curr Appl Phys 6(6):1030–1035CrossRefGoogle Scholar
  25. 25.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216CrossRefGoogle Scholar
  26. 26.
    Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261CrossRefGoogle Scholar
  27. 27.
    Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89(5):3018CrossRefGoogle Scholar
  28. 28.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670CrossRefGoogle Scholar
  29. 29.
    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Guarino V, Cirillo V, Taddei P, Alvarez-Perez MA, Ambrosio L (2011) Tuning size scale and cristalliniy of PCL electrospun membranes via solvent permittivity to address hMSC response. Macromol Biosci 11:1694–1705PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibres. Macromolecules 35(22):8456–8466CrossRefGoogle Scholar
  32. 32.
    Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fibre repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708.  https://doi.org/10.1002/mame.200900425CrossRefGoogle Scholar
  33. 33.
    Eda G, Shivkumar S (2006) Bead structure variations during electrospinning of polystyrene. J Mater Sci 41(17):5704–5708CrossRefGoogle Scholar
  34. 34.
    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407CrossRefGoogle Scholar
  35. 35.
    Guarino V, Albore MD, Altobelli R, Ambrosio L (2016) Polymer bioprocessing to fabricate 3D scaffolds for tissue engineering. Int Polym Process 31:587.  https://doi.org/10.3139/217.3239CrossRefGoogle Scholar
  36. 36.
    Jiang S, Hou H, Agarwal S, Greiner A (2016) Polyimide nanofibres by “green” electrospinning via aqueous solution for filtration applications. ACS Sustain Chem Eng 4(9):4797–4804CrossRefGoogle Scholar
  37. 37.
    Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PC, Willerth SM, Jun MB (2014) Fabrication of Poly(ecaprolactone) microfibre scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. J Biomater Sci Polym 25:1–17CrossRefGoogle Scholar
  38. 38.
    Guarino V, Ambrosio L (2016) Electrofluidodynamics: exploring new toolbox to design biomaterials for tissue regeneration and degeneration. Nanomedicine 11(12):1515–1518PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cirillo V, Guarino V, Alvarez-Perez MA, Marrese M, Ambrosio L (2014) Optimization of fully aligned bioactive electrospun fibres for “in vitro” nerve guidance. J Mater Sci Mater Med 25(10):2323–2332PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Guarino V, Cirillo V, Ambrosio L (2016) Bicomponent electrospun scaffolds to design ECM tissue analogues. Exp Rev Med Dev 13(1):83–102CrossRefGoogle Scholar
  41. 41.
    Detta N, Brown TD, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW (2010) Melt electrospinning of polycaprolactone and its blends with poly (ethylene glycol). Polym Int 59:1558–1562CrossRefGoogle Scholar
  42. 42.
    Patil H, Tiwari RV, Repka MA (2016) Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech 17:20–42PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schmack G, Tändler B, Vogel R, Beyreuther R, Jacobens S, Fritz HG (1999) Biodegradable fibres of Poly(l-lactide) produced by high-speed melt spinning and spin drawing. J Appl Polym Sci 73:2785–2797CrossRefGoogle Scholar
  44. 44.
    Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD (2015) Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B 21:187–202CrossRefGoogle Scholar
  45. 45.
    Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR (2013) Dermal fibroblast infiltration of Poly(e-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 5:025001PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Qin X-H, Wang S-Y (2008) Electrospun nanofibers from cross-linked poly(vinyl alcohol) and its filtration efficiency. J Appl Polym Sci 109(2):951–956CrossRefGoogle Scholar
  47. 47.
    Homaeigohar SS, Buhr K, Ebert K (2010) Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Membr Sci 365(1–2):68–77CrossRefGoogle Scholar
  48. 48.
    Polat Y, Pampal ES, Stojanovska E, Simsek R, Hassanin A, Kilic A et al (2016) Solution blowing of thermoplastic polyurethane nanofibers: a facile method to produce flexible porous materials. J Appl Polym Sci 133(9):43025–43034CrossRefGoogle Scholar
  49. 49.
    Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) Solution blow spinning: a new method to produce micro- and nanofibres from polymer solutions. J Appl Polym Sci 113(4):2322–2330CrossRefGoogle Scholar
  50. 50.
    Sinha-Ray S, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2015) Theoretical and experimental investigation of physical mechanisms responsible for polymer nanofibre formation in solution blowing. Polymer 56:452–463CrossRefGoogle Scholar
  51. 51.
    Zhuang X, Yang X, Shi L, Cheng B, Guan K, Kang W (2012) Solution blowing of submicron-scale cellulose fibres. Carbohydr Polym 90(2):982–987PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tao X, Zhou G, Zhuang X, Cheng B, Li X, Li H (2015) Solution blowing of activated carbon nanofibres for phenol adsorption. RSC Adv 5(8):5801–5808CrossRefGoogle Scholar
  53. 53.
    Hsiao H-Y, Huang C-M, Hsu M-Y, Chen H (2011) Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for CO2 adsorption. Sep Purif Technol 82:19–27CrossRefGoogle Scholar
  54. 54.
    Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895CrossRefGoogle Scholar
  55. 55.
    Teo WE, Ramakrishna S (2005) Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology 16:1878CrossRefGoogle Scholar
  56. 56.
    Kim G, Cho YS, Kim WD (2006) Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode. Eur Polym J 42:2031CrossRefGoogle Scholar
  57. 57.
    Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49:4226CrossRefGoogle Scholar
  58. 58.
    Zhou F-L, Gong R-H, Porat I (2010) Needle and needleless electrospinning for nanofibres. J Appl Polym Sci 115:2591–2598.  https://doi.org/10.1002/app.31282CrossRefGoogle Scholar
  59. 59.
    Niu H, Lin T (2012) Fibre generators in needleless electrospinning. J Nanomater 2012:725950Google Scholar
  60. 60.
    Moon S, Gil M, Lee KJ (2017) Syringeless electrospinning toward versatile fabrication of nanofibre web. Sci Rep 7:41424PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Niu H, Wang X, Lin T (2011) Needleless electrospinning: developments and performances, nanofibres – production, properties and functional applications, Dr. Lin T (ed). ISBN: 978-953-307-420-7Google Scholar
  62. 62.
    Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130(46):15460–15466PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218CrossRefGoogle Scholar
  65. 65.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. 26–30CrossRefGoogle Scholar
  66. 66.
    Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT, Mhaisalkar S, Lu X (2008) Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 49(19):4196–4203CrossRefGoogle Scholar
  67. 67.
    Kim K, Lee K, Khil M, Ho Y, Kim H (2004) The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fibres Polym 5(2):122–127CrossRefGoogle Scholar
  68. 68.
    Wang Y, Wang G, Chen L, Li H, Yin T, Wang B, Lee JCM, Yu Q (2009) Electrospun nanofibre meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Biofabrication 1:015001:1–015001:9CrossRefGoogle Scholar
  69. 69.
    Li D, Wang YL, Xia YN (2004) Electrospinning nanofibres as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366CrossRefGoogle Scholar
  70. 70.
    Zussman E, Theron A, Yarin AL (2003) Formation of nanofibre crossbars in electrospinning. Appl Phys Lett 82:973–975CrossRefGoogle Scholar
  71. 71.
    Ye XY, Huang XJ, Xu ZK (2012) Nanofibrous mats with bird’s nest patterns by electrospinning. Chin J Polym Sci 30:130–137CrossRefGoogle Scholar
  72. 72.
    Ding Z, Salim A, Ziaie B (2009) Selective nanofibre deposition through field-enhanced electrospinning. Langmuir 25:9648–9652PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zucchelli A, Fabiani D, Gualandi C, Focarete ML (2009) An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J Mater Sci 44:4969–4975CrossRefGoogle Scholar
  74. 74.
    Ma W, Guo Z, Zhao J, Yu Q, Wang F, Han J, Pan H, Yao J, Zhang Q, Samal SK, De Smedt SC, Huang C (2017) Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep Purif Technol 177:71–85CrossRefGoogle Scholar
  75. 75.
    Lee E-J, An AK, Hadi P, Lee S, Wood YC, Shon HK (2017) Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation. J Membr Sci 524:712–720CrossRefGoogle Scholar
  76. 76.
    Sun H, Xu Y, Zhou Y, Gao W, Zhao H, Wang W (2017) Preparation of superhydrophobic nanocomposite fibre membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles. J Appl Polym Sci 134:44501Google Scholar
  77. 77.
    Wei Z, Li J, Wang C, Cao J, Yao Y, Lu H, Li Y, He X (2017) Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibres. Appl Surf Sci 392:260–267CrossRefGoogle Scholar
  78. 78.
    Woo YC, Tijing LD, Shim W-G, Choi J-S, Kim S-H, He T, Drioli E, Shon HK (2016) Water desalination using graphene-enhanced electrospun nanofibre membrane via air gap membrane distillation. J Membr Sci 520:99–110CrossRefGoogle Scholar
  79. 79.
    Ren L-F, Xia F, Shao J, Zhang X, Li J (2017) Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation. Desalination 404:155–166CrossRefGoogle Scholar
  80. 80.
    Cojocaru C, Dorneanu PP, Airinei A, Olaru N, Samoila P, Rotaru A (2017) Design and evaluation of electrospun polysulfone fibres and polysulfone/NiFe2O4 nanostructured composite as sorbents for oil spill cleanup. J Taiwan Inst Chem Eng 70:267–281CrossRefGoogle Scholar
  81. 81.
    Huang Y, Huang Q-L, Liu H, Zhang C-X, You Y-W, Li N-N, Xiao C-F (2017) Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes. J Membr Sci 523:317–326CrossRefGoogle Scholar
  82. 82.
    Pan J, Hou L, Wang Q, He Y, Wu L, Mondal AN, Xu T (2017) Preparation of bipolar membranes by electrospinning. Mater Chem Phys 186:484–491CrossRefGoogle Scholar
  83. 83.
    Wang J, Zhao W, Wang B, Pei G, Li C (2017) Multilevel-layer-structured polyamide/poly(trimethylene terephthalate) nanofibrous membranes for low-pressure air filtration. J Appl Polym Sci 134:44716Google Scholar
  84. 84.
    Mahdavi H, Moslehi M (2016) A new thin film composite nanofiltration membrane based on PET nanofibre support and polyamide top layer: preparation and characterization. J Polym Res 23:257CrossRefGoogle Scholar
  85. 85.
    Lou L-H, Qin X-H, Zhang H (2017) Preparation and study of low-resistance polyacrylonitrile nano membranes for gas filtration. Text Res J 87:208–215CrossRefGoogle Scholar
  86. 86.
    Zhang S, Liu H, Yin X, Li Z, Yu J, Ding B (2017) Tailoring mechanically robust Poly(m-phenylene isophthalamide) nanofibre/nets for ultrathin high-efficiency air filter. Sci Rep 7:40550PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Aslan T, Arslan S, Eyvaz M, Güçlü S, Yüksel E, Koyuncu İ (2016) A novel nanofibre microfiltration membrane: Fabrication and characterization of tubular electrospun nanofibre (TuEN) membrane. J Membr Sci 520:616–629CrossRefGoogle Scholar
  88. 88.
    Ryu S-Y, Chung JW, Kwak S-Y (2017) Tunable multilayer assemblies of nanofibrous composite mats as permeable protective materials against chemical warfare agents. RSC Adv 7:9964–9974CrossRefGoogle Scholar
  89. 89.
    An AK, Guo J, Lee E-J, Jeong S, Zhao Y, Wang Z, Leiknes T (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67CrossRefGoogle Scholar
  90. 90.
    Ge J, Zhang J, Wang F, Li Z, Yu J, Ding B (2017) Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. J Mater Chem A 5:497–502CrossRefGoogle Scholar
  91. 91.
    Wahiduzzaman, Allmond K, Stone J, Harp S, Mujibur K (2017) Synthesis and electrospraying of nanoscale MOF (metal organic framework) for high-performance CO2 adsorption membrane. Nanoscale Res Lett 12:6PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chowdhury MR, Huang L, McCutcheon JR (2017) Thin film composite membranes for forward osmosis supported by commercial nanofibre nonwovens. Ind Eng Chem Res 56:1057–1063CrossRefGoogle Scholar
  93. 93.
    Pana S-F, Dong Y, Zhenga Y-M, Zhong L-B, Yuan Z-H (2017) Self-sustained hydrophilic nanofibre thin film composite forward osmosis membranes: preparation, characterization and application for simulated antibiotic wastewater treatment. J Membr Sci 523:205–215CrossRefGoogle Scholar
  94. 94.
    Tian M, Wang Y-N, Wang R, Fane AG (2017) Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination 401:142–150CrossRefGoogle Scholar
  95. 95.
    Woo YC, Tijing LD, Park MJ, Yao M, Choi J-S, Lee S, Kim S-H, An K-J, Shon HK (2017) Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation. Desalination 403:187–198CrossRefGoogle Scholar
  96. 96.
    Chitpong N, Husson SM (2016) Nanofibre ion-exchange membranes for the rapid uptake and recovery of heavy metals from water. Membranes 6:59PubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofibre membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429CrossRefGoogle Scholar
  98. 98.
    Wang Z, Crandall C, Prautzsch VL, Sahadevan R, Menkhaus TJ, Fong H (2017) Electrospun regenerated cellulose nanofibre membranes surface-grafted with water-insoluble poly(HEMA) or water-soluble poly(AAS) chains via the ATRP method for ultrafiltration of water. ACS Appl Mater Interfaces 9:4272–4278PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Welle A, Kröger M, Döring M, Niederer K, Pindel E, Chronakis IS (2007) Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials 28:2211PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Dhandayuthapani B, Poulose AC, Nagaoka Y, Hasumura T, Yoshida Y, Maekawa T, Kumar DS (2012) Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication 4:025008PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kim HJ, Pant HR, Choi NJ et al (2013) Composite electrospun fly ash/polyurethane fibres for absorption of volatile organic compounds from air. Chem Eng J 230:244–250CrossRefGoogle Scholar
  102. 102.
    Yarin AL, Pourdeyhimi B, Ramakrishna S (2014) Fundamentals and applications of micro and nanofibres. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  103. 103.
    Wang N, Si Y, Wang N et al (2014) Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep Purif Technol 126:44–51CrossRefGoogle Scholar
  104. 104.
    Sutherland K (2013) Air filtration: keeping the air that we breathe clean. Filtr Sep 50:18–22CrossRefGoogle Scholar
  105. 105.
    Wang N, Yang Y, Al-Deyab SS et al (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3:23946–23954CrossRefGoogle Scholar
  106. 106.
    Shen J, Chen R, He J (2014) Bio-mimic design of PM2.5 anti-smog masks. Therm Sci 18:1689–1690CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymers, Composites and BiomaterialsNational Research Council of ItalyNaplesItaly
  2. 2.Institute for Macromolecular StudiesNational Research Council of ItalyNaplesItaly

Personalised recommendations