Delivering More Payload (High DAR ADCs)

  • Natalya BodyakEmail author
  • Alexander V. Yurkovetskiy
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Antibody drug conjugates (ADCs) for oncology applications are chemotherapeutic agents designed to selectively deliver cytotoxic drug payloads to neoplastic tissue. This book chapter reviews the latest approaches for high drug loaded ADCs. The primary focus of this review is related to ADC drug payload and antibody-drug bioconjugation linker selection strategies resulting in biotherapeutics with improved physicochemical properties, efficacy, and pharmacokinetics. A separate section of this chapter gives a brief overview of antibody targeted nanotherapeutics, a growing and diverse class of anti-cancer agents specifically designed for delivery of significant amounts of drug payload. New strategies to design the highly potent antibody targeted agents discussed in this chapter provide the opportunity to expand the list of drug payloads suitable for ADC applications and introduce agents with new mechanisms of action, which in turn may potentially lead to improvement in therapeutic index of the ADCs for the treatment of cancer.


Antibody drug conjugates High DAR ADCs High drug loaded ADCs Nanotherapeutics 



Antibody drug conjugate


Antibody/drug-conjugated micelle




Drug antibody ratio


Enhanced permeability and retention






N-(2-hydroxypropyl) methacrylamide






Mucic acid polymer conjugate of camptothecin


Maleimidodiaminopropionic acid


Multidrug resistance


Monomethyl auristatin D


Monomethyl auristatin E


Monomethyl auristatin F


Ovarian cancer






Poly-1-hydroxymethylethylene hydroxymethylformal




Reticular endothelial system


Severe combined immunodeficiency disease




Therapeutic index


Triple-negative breast cancer


Topoisomerase I





The authors thank Radha Iyengar for thoughtful and insightful comments on the manuscript. The authors also thank Theresa E. Singleton, PhD of Singleton Science, LLC for editorial support, which was funded by Mersana Therapeutics in accordance with Good Publication Practice (GPP3) guidelines.


  1. 1.
    A pilot study of 64-Cu labeled brain PET/MRI for MM-302, a novel HER2 targeting agent, in advanced HER2+ cancer with brain metastases – NCT02735798Google Scholar
  2. 2.
    A study evaluating MM-310 in patients with solid tumors – NCT03076372Google Scholar
  3. 3.
    Ali MF, Salah M, Rafea M, Saleh N (2008) Liposomal methotrexate hydrogel for treatment of localized psoriasis: preparation, characterization and laser targeting. Med Sci Monit 14(12):PI66–PI74PubMedGoogle Scholar
  4. 4.
    Anami Y, Xiong W, Gui X, Deng M, Zhang CC, Zhang N, An Z, Tsuchikama K (2017) Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drugconjugates with high potency. Org Biomol Chem 15(26):5635–5642CrossRefPubMedGoogle Scholar
  5. 5.
    Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, Shah NC, O’Shaughnessy J, Kalinsky K, Guarino M, Abramson V, Juric D, Tolaney SM, Berlin J, Messersmith WA, Ocean AJ, Wegener WA, Maliakal P, Sharkey RM, Govindan SV, Goldenberg DM, Vahdat LT (2017) Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast Cancer. J Clin Oncol 35:2141CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bauer TM, Spigel D, Ready N, Morgensztern D, Glisson BS, Byers LA, Burris H, Robert F, Strickland DK, Pietanza MC, Govindan R, Dylla SJ, Peng S, Rudin C (2016) ORAL02.01: safety and efficacy of single-agent Rovalpituzumab Tesirine, a DLL3-targeted ADC, in recurrent or refractory SCLC. Topic Med Oncol J Thorac Oncol 11S(11):S252–S253CrossRefGoogle Scholar
  7. 7.
    Bergstrom DA A, Bodyak N, Park PU, Yurkovetskiy A, DeVit M, Yin M, Poling L, Thomas JD, Gumerov D, Xiao D, Ter-Ovanesyan E, Qin L, Uttard A, Johnson A, Lowinger TB (2015) XMT-1522 induces tumor regressions in pre-clinical models representing HER2-positive and HER2 low-expressing breast cancer. 38th annual SABCS Dec. 8–12, 2015, Publication Number: P4-14-28Google Scholar
  8. 8.
    Bergstrom DA, Bodyak N, Yurkovetskiy A, Park PU, DeVit M, Yin M, Poling L, Thomas JD, Gumerov D, Xiao D, Ter-Ovanesyan E, Qin L, Uttard U, Johnson A, Lowinger TB (2015) A novel, highly potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 75(15 Suppl):Abstract nr LB-231Google Scholar
  9. 9.
    Bergstrom D, Bodyak N, Yurkovetskiy A, Poling L, Yin M, Protopopova M, Devit M, Qin L, Gumerov D, Ter-Ovanesyan E, Mosher R, Lowinger T (2016) A NaPi2b antibody-drug conjugate induces durable complete tumor regressions in patient-derived xenograft models of NSCLC. IASLC 17th World Conference on Lung Cancer; Dec 4-7, Vienna, Austria. Abstract nr 5769Google Scholar
  10. 10.
    Bodyak N, Yurkovetskiy A, Yin M, Gumerov G, Bollu R, Conlon P, Gurijala VR, McGillicuddy D, Stevenson C, Ter-Ovanesyan E, Park PU, Poling P, Lee W, DeVit M, Xiao D, Qin L, Lowinger TB, Bergstrom DA (2016) Discovery and preclinical development of a highly potent NaPi2b-targeted antibody-drug conjugate (ADC) with significant activity in patient-derived non-small cell lung cancer (NSCLC) xenograft models. In: Proceedings of the 107th annual meeting of the American Association for Cancer Research; 2016; New Orleans, LA: AACR. Cancer Res 76(14 Suppl):Abstract nr 1194Google Scholar
  11. 11.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–6. Erratum in: Clin Cancer Res 2002;8(1):300Google Scholar
  12. 12.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):1–33CrossRefGoogle Scholar
  13. 13.
    Burke PJ, Hamilton JZ, Jeffrey SC, Hunter JH, Doronina SO, Okeley NM, Miyamoto JB, Anderson ME, Stone IJ, Ulrich ML, Simmons JK, McKinney EE, Senter PD, Lyon RP (2017) Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther 16(1):116–123CrossRefPubMedGoogle Scholar
  14. 14.
    Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Goldenberg DM (2011) Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res 17(10):3157–3169CrossRefPubMedGoogle Scholar
  15. 15.
    Crosasso P, Brusa P, Dosio F, Arpicco S, Pacchioni D, Schuber F, Cattel L (1997) Antitumoral activity of liposomes and immunoliposomes containing 5-fluorouridine prodrugs. J Pharm Sci 86(7):832–839CrossRefPubMedGoogle Scholar
  16. 16.
    de Goeij BE, Lambert JM (2016) New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 40:14–23CrossRefPubMedGoogle Scholar
  17. 17.
    Elias DJ, Hirschowitz L, Kline LE, Kroener JF, Dillman RO, Walker LE, Robb JA, Timms RM (1990) Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res 50(13):4154–4159PubMedGoogle Scholar
  18. 18.
    Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM (2017) Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 115:159CrossRefPubMedGoogle Scholar
  19. 19.
    Eloy JO, Petrilli R, Brueggemeier RW, Marchetti JM, Lee RJ (2017) Rapamycin-loaded immunoliposomes functionalized with trastuzumab: a strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anti Cancer Agents Med Chem 17(1):48–56Google Scholar
  20. 20.
    Etrych T, Mrkvan T, Ríhová B, Ulbrich K (2007) Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release 122(1):31–38CrossRefPubMedGoogle Scholar
  21. 21.
    Etrych T, Strohalm J, Kovár L, Kabesová M, Ríhová B, Ulbrich K (2009) HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J Control Release 140(1):18–26CrossRefPubMedGoogle Scholar
  22. 22.
    Gaddy DF, Lee H, Zheng J, Jaffray DA, Wickham TJ, Hendriks BS (2015) Whole-body organ-level and kidney microdosimetric evaluations of 64Cu-loaded HER2/ErbB2- targeted liposomal doxorubicin (64Cu-MM-302) in rodents and primates. EJNMMI Res 5:24CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Geddie ML, Kohli N, Kirpotin DB, Razlog M, Jiao Y, Kornaga T, Rennard R, Xu L, Schoerberl B, Marks JD, Drummond DC, Lugovskoy AA (2017) Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 9(1):58–67. Epub 2016 Nov 17CrossRefPubMedGoogle Scholar
  24. 24.
    Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM (2015) Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 6(26):22496–22512CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Govindan SV, Cardillo TM, Sharkey RM, Tat F, Gold DV, Goldenberg DM (2013) Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther 12(6):968–978CrossRefPubMedGoogle Scholar
  26. 26.
    Govindan SV, Cardillo TM, Rossi EA, Trisal P, McBride WJ, Sharkey RM, Goldenberg DM (2015) Improving the therapeutic index in cancer therapy by using antibody-drug conjugates designed with a moderately cytotoxic drug. Mol Pharm 12(6):1836–1847CrossRefPubMedGoogle Scholar
  27. 27.
    Gray J, Cubitt CL, Zhang S, Chiappori A (2012) Combination of HDAC and topoisomerase inhibitors in small cell lung cancer. Cancer Biol Ther 13(8):614–622CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gupta N, Kancharla J, Kaushik S, Ansari A, Hossain S, Goyal R, Pandey M, Sivaccumar J, Hussain S, Sarkar A, Sengupta A, Mandal SK, Roy M, Sengupta S (2017) Development of a facile antibody–drug conjugate platform for increased stability and homogeneity. Chem Sci 8:2387CrossRefPubMedGoogle Scholar
  29. 29.
    Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070CrossRefPubMedGoogle Scholar
  30. 30.
    Han H, Davis ME (2013) Single-antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm 10(7):2558–2567CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Han H, Davis ME (2013) Targeted nanoparticles assembled via complexation of boronic-acid-containing targeting moieties to diol-containing polymers. Bioconjug Chem 24(4):669–677CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Harada M, Tsuchiya M, Miyazaki R, Inoue T, Tanaka R, Yanagisawa Y, Ito M, Yu I, Naito K (2016) Preclinical evaluation of NC-6201, an antibody/drug-conjugated micelle incorporating novel hemiasterlin analogue E7974. AACR 107th annual meeting 2016; April 16–20, 2016; New Orleans. Abstract 1368Google Scholar
  33. 33.
    Hoch U, Staschen CM, Johnson RK, Eldon MA (2014) Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models. Cancer Chemother Pharmacol 74(6):1125–1137CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5):1038–1044PubMedGoogle Scholar
  35. 35.
    Jain NK, Tare MS, Mishra V, Tripathi PK (2015) The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine 11(1):207–218CrossRefPubMedGoogle Scholar
  36. 36.
    Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang P, Mukthavaram R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X, Nomura N, Gallagher M, Abbasi T, Vali S, Pingle SC, Makale M, Kesari S (2014) Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med 12:13CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kato Y, Harada M, Saito H, Hayashi T. Active targeting polymer micelle encapsulating drug, and pharmaceutical composition. US Patent Application 20100221320Google Scholar
  39. 39.
    Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740CrossRefPubMedGoogle Scholar
  40. 40.
    Kirpotin DB, Noble CO, Hayes ME, Huang Z, Kornaga T, Zhou Y, Nielsen UB, Marks JD, Building DDC (2012) Characterizing antibody-targeted lipidic nanotherapeutics. Methods Enzymol 502:139–166CrossRefPubMedGoogle Scholar
  41. 41.
    Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VG, Bansal V, Sistla R, Adams DJ (2016) Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep 6:23179CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kullberg M, Mann K, Anchordoquy TJ (2012) Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. Mol Pharm 9(7):2000–2008CrossRefPubMedGoogle Scholar
  43. 43.
    Lambert JM, Chari RVJ (2014) Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem 57:6949–6964CrossRefPubMedGoogle Scholar
  44. 44.
    Lee H, Shields AF, Siegel BA, Miller KD, Krop I, Ma CX, LoRusso PM, Munster PN, Campbell K, Gaddy DF, Leonard SC, Geretti E, Blocker SJ, Kirpotin DB, Moyo V, Wickham TJ, Hendriks BS (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res.
  45. 45.
    Levengood MR, Zhang X, Emmerton KK, Hunter JH, Peter D Senter PD (2017) Development of homogeneous dual-drug ADCs: application to the co-delivery of auristatin payloads with complementary antitumor activities. Proceedings of the American Association for Cancer Research, vol 58. April 2017, Abstract# 982, p 250Google Scholar
  46. 46.
    Levengood MR, Zhang X, Hunter JH, Emmerton KK, Miyamoto JB, Lewis TS, Senter PD (2017) Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew Chem Int Ed Engl 56(3):733–737CrossRefPubMedGoogle Scholar
  47. 47.
    Lin K, Rubinfeld B, Zhang C, Firestein R, Harstad E, Roth L, Tsai SP, Schutten M, Xu K, Hristopoulos M, Polakis P (2015) Preclinical Development of an Anti-NaPi2b (SLC34A2) Antibody-Drug Conjugate as a Therapeutic for Non-Small Cell Lung and Ovarian Cancers. Clin Cancer Res 21(22):5139–5150CrossRefPubMedGoogle Scholar
  48. 48.
    LoRusso P, Krop I, Miller K et al (2015) A Phase 1 study of MM-302, a HER2-targeted PEGylated liposomal doxorubicin, in patients with HER2+ metastatic breast cancer (mBC). Presented at: 2015 AACR Annual Meeting; April 18–22, 2015; Philadelphia. Abstract CT234Google Scholar
  49. 49.
    Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33(7):733–735CrossRefPubMedGoogle Scholar
  50. 50.
    Ma P, Zhang X, Ni L, Li J, Zhang F, Wang Z, Lian S, Sun K (2015) Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab. Int J Nanomedicine 10:2173–2190CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638CrossRefPubMedGoogle Scholar
  52. 52.
    Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 3(12):1234–1241CrossRefGoogle Scholar
  53. 53.
    Mantaj J, Jackson PJ, Rahman KM, Thurston DE (2017) From Anthramycin to Pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl 56(2):462–488CrossRefPubMedGoogle Scholar
  54. 54.
    Miller ML, Fishkin NE, Li W, Whiteman KR, Kovtun Y, Reid EE, Archer KE, Maloney EK, Audette CA, Mayo MF, Wilhelm A, Modafferi HA, Singh R, Pinkas J, Goldmacher V, Lambert JM, Chari RV (2016) A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol Cancer Ther 15(8):1870–1878CrossRefPubMedGoogle Scholar
  55. 55.
    MM-302 plus trastuzumab vs. chemotherapy of physician’s choice plus trastuzumab in HER2-positive locally advanced/metastatic breast cancer patients (HERMIONE) – NCT02213744Google Scholar
  56. 56.
    Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, Miyazaki H, Kasuya Y, Ogitani Y, Yamaguchi J, Abe Y, Honda T (2016) Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett 26(6):1542–1545CrossRefPubMedGoogle Scholar
  57. 57.
    Noble CO, Kirpotin DB, Hayes ME, Mamot C, Hong K, Park JW, Benz CC, Marks JD, Drummond DC (2004) Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets 8(4):335–353CrossRefPubMedGoogle Scholar
  58. 58.
    Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T (2016) DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22(20):5097–5108CrossRefPubMedGoogle Scholar
  59. 59.
    Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T (2016) Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 107(7):1039–1046CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Omelyanenko V, Kopecková P, Gentry C, Shiah JG, Kopecek J (1996) HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 1. Influence of the method of synthesis on the binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. J Drug Target 3(5):357–373CrossRefPubMedGoogle Scholar
  61. 61.
    Pabst M, McDowell W, Manin A, Kyle A, Camper N, De Juan E, Parekh V, Rudge F, Makwana H, Kantner T, Parekh H, Michelet A, Sheng X, Popa G, Tucker C, Khayrzad F, Pollard D, Kozakowska K, Resende R, Jenkins A, Simoes F, Morris D, Williams P, Badescu G, Baker MP, Bird M, Frigerio M, Godwin A (2017) 18. Modulation of drug-linker design to enhance in vivo potency of homogeneous antibody-drug conjugates. J Control Release 253:160–164CrossRefPubMedGoogle Scholar
  62. 62.
    Pagnan G, Stuart DD, Pastorino F, Raffaghello L, Montaldo PG, Allen TM, Calabretta B, Ponzoni M (2000) Delivery of c-myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD2-targeted immunoliposomes: antitumor effects. J Natl Cancer Inst 92(3):253–261CrossRefPubMedGoogle Scholar
  63. 63.
    Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):1401CrossRefGoogle Scholar
  64. 64.
    Park JW, Hong K, Kirpotin DB, Meyer O, Papahadjopoulos D, Benz CC (1997) Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett 118(2):153–160CrossRefPubMedGoogle Scholar
  65. 65.
    Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79CrossRefPubMedGoogle Scholar
  66. 66.
    Phase I/II study of U3-1402 in subjects with human epidermal growth factor receptor 3 (HER3) positive metastatic breast cancer – NCT02980341Google Scholar
  67. 67.
    Řihová B, Kopeček J (1985) Biological properties of targetable poly[N-(2-hydroxypropyl)-methacrylamide]-antibody conjugates. J Control Release 2:289–310CrossRefGoogle Scholar
  68. 68.
    Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62(24):7190–7194PubMedGoogle Scholar
  69. 69.
    Schneck D, Butler F, Dugan W, Littrell D, Petersen B, Bowsher R, DeLong A, Dorrbecker S (1990) Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin Pharmacol Ther 47(1):36–41CrossRefPubMedGoogle Scholar
  70. 70.
    Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nature Biotech 30:631–637CrossRefGoogle Scholar
  71. 71.
    Simmons J, Zapata F, Neff-Laford H, Hunter J, Cochran J, Burke P, Lyon RP. Reducing toxicity of antibody-drug conjugates through modulation of pharmacokinetics. Proceedings of the American Association for Cancer Research. Vol 58. April 2017, Abstract# 60. p 15Google Scholar
  72. 72.
    Stathopoulos GP, Antoniou D, Dimitroulis J, Stathopoulos J, Marosis K, Michalopoulou P (2011) Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 68(4):945–950CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Stein EM, Stein A, Walter RB et al (2014) Interim analysis of a phase 1 trial of SGN-CD33A in patients with CD33-positive acute myeloid leukemia (AML) [abstract]. Blood 124(21). Abstract 623Google Scholar
  74. 74.
    Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, Casas MG, Dorywalska M, Farias S, Pios A, Lui V, Dushin R, Zhou D, Navaratnam T, Tran TT, Sutton J, Lindquist KC, Han B, Liu SH, Shelton DL, Pons J, Rajpal A (2015) Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol 33(7):694–696CrossRefPubMedGoogle Scholar
  75. 75.
    Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, Qiu Q, Wu R, Hong E, Bogalhas M, Wang L, Dong L, Setiady Y, Maloney EK, Ab O, Zhang X, Pinkas J, Keating TA, Chari R, Erickson HK, Lambert JM (2017) Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem 28(5):1371–1381CrossRefPubMedGoogle Scholar
  76. 76.
    Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17(2):478–484CrossRefPubMedGoogle Scholar
  77. 77.
    Ueno S, Hirotani K, Abraham R, Blum S, Frankenberger B, Redondo-Muller M, Bange J, Ogitani Y, Zembutsu A, Morita K, Nakada T, Majima S, Abe Y, Agatsuma T (2017) U3-1402a, a novel HER3-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a potent antitumor effıcacy. In: Proceedings of the 108th Annual Meeting of the American Association for Cancer Research; 2017; Washington, DC: AACR; Cancer Res 76(14 Suppl):Abstract nr 3092Google Scholar
  78. 78.
    Ulbrich K, Etrych T, Chytil P, Jelínková M, Ríhová B (2004) Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target 12(8):477–489CrossRefPubMedGoogle Scholar
  79. 79.
    Yang H (2016) Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine 12(2):309–316CrossRefPubMedGoogle Scholar
  80. 80.
    Yurkovetskiy AV, Fram RJ (2009) XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev 61(13):1193–1202CrossRefGoogle Scholar
  81. 81.
    Yurkovetskiy A, Choi S, Hiller A, Yin M, McCusker C, Syed S, Fischman AJ, Papisov MI (2005) Fully degradable hydrophilic polyals for protein modification. Biomacromolecules 6(5):2648–2658CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yurkovetskiy A, Bodyak N, Yin M, Thomas J, Conlon P, Stevenson C, Uttard U, Qin L, Gumerov D, Ter-Ovaneysan E, DeVit M, Lowinger TB (2013) Advantages of polyacetal polymer-based antibody drug conjugates employing cysteine bioconjugation. In: Proceedings of the 104th annual meeting of the American Association for Cancer Research; 2013; Washington, DC: AACR; Cancer Res 73(8 Suppl):Abstract nr 4331Google Scholar
  83. 83.
    Yurkovetskiy A, Bodyak N, Yin M, Thomas JD, Conlon PR, Stevenson CA, Uttard A, Qin LL, Gumerov DR, Ter-Ovanesyan E, Gurijala VR, McGillicuddy D, Glynn RE, DeVit M, Poling LL, Park PU, Lowinger TB (2014) Antibody drug conjugate (ADC) designed with Fleximer® platform enables high drug-loading of payloads and potent anti-tumor activities in tumor cells with low target expression. The Antibody Biology & Engineering Gordon Research Conference. Lucca (Barga), March 23–28Google Scholar
  84. 84.
    Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD, Hammond CE, Qin L, Zhu B, Gumerov DR, Ter-Ovanesyan E, Uttard A, Lowinger TB (2015) A polymer-based antibody-vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75(16):3365–3372CrossRefPubMedGoogle Scholar
  85. 85.
    Yurkovetskiy A, Gumerov D, Ter-Ovanesyan E, Conlon P, Devit M, Bu C, Bodyak N, Lowinger T, Bergstrom D (2017) Non-clinical pharmacokinetics of XMT-1522, a HER2 targeting auristatin-based antibody drug conjugate. In: Proceedings of the 108th annual meeting of the American Association for Cancer Research; 2017; Washington, DC: AACR; Cancer Res 76(14 Suppl):Abstract nr 48Google Scholar
  86. 86.
    Zhang L, Fang Y, Kopeček J, Yang J (2017) A new construct of antibody-drug conjugates for treatment of B-cell non-Hodgkin’s lymphomas. Eur J Pharm Sci. Accepted manuscript 103:36–46CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mersana Therapeutics, Inc.CambridgeUSA
  2. 2.Valley Cross Consulting, Inc.North GraftonUSA

Personalised recommendations