Advertisement

Antibody-Drug Conjugates: Targeting the Tumor Microenvironment

  • Alberto Dal Corso
  • Samuele Cazzamalli
  • Dario Neri
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Antibody-drug conjugates (ADCs) have been used for more than two decades as tools for the selective delivery of cytotoxic agents to the tumor site, with the aim to increase anti-cancer activity and spare normal tissues from undesired toxicity. Until recently, most ADC development activities have focused on the use of monoclonal antibodies, capable of selective binding and internalization into the target tumor cells. However, in principle, it would be conceivable to develop non-internalizing ADC products, which liberate their toxic payload in the extracellular environment. In this Chapter, we review previous work performed on non-internalizing ADC products, with a special emphasis on drug conjugates which selectively localize to the modified extracellular matrix in the neoplastic mass.

Keywords

Non-internalizing ADCs Extracellular tumor antigens Tumor microenvironment Vascular targeting 

References

  1. 1.
    (a) van der Veldt AA, Hendrikse NH, Smit EF, Mooijer MP, Rijnders AY, Gerritsen WR, et al (2010) Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients. Eur J Nucl Med Mol Imaging 37:1950–1958; (b) van der Veldt AA, Lubberink M, Mathijssen RH, Loos WJ, Herder GJ, Greuter HN, et al (2013) Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using 11C-docetaxel and positron emission tomography. Clin Canc Res 19:4163–4173; (c) Kesner AL, Hsueh WA, Htet NL, Pio BS, Czernin J, Pegram MD, et al (2007) Biodistribution and predictive value of 18F-fluorocyclophosphamide in mice bearing human breast cancer xenografts. J Nucl Med 48:2021–2027; (d) Abe Y, Fukuda H, Ishiwata K, Yoshioka S, Yamada K, Endo S, et al (1983) Studies on 18F-labeled pyrimidines. Tumor uptakes of 18F-5-fluorouracil, 18F-5-fluorouridine, and 18F-5-fluorodeoxyuridine in animals. Eur J Nucl Med 8:258–261; (e) Kuchar M, Oliveira MC, Gano L, Santos I, Kniess T (2012) Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis-radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib. Bioorg Med Chem Lett 22:2850–2855Google Scholar
  2. 2.
    (a) Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13:235–244; (b) Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Disc 14:203–219; (c) Krall N, Scheuermann J, Neri D (2013) Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew Chem Int Ed 52:1384–1402Google Scholar
  3. 3.
    (a) Gurcan HM, Keskin DB, Stern JN, Nitzberg MA, Shekhani H, Ahmed AR (2009) A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol 9:10–25; (b) Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146; (c) Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129Google Scholar
  4. 4.
    Kim EG, Kim KM (2015) Strategies and advancement in antibody-drug conjugate optimization for targeted Cancer therapeutics. Biomol Ther 23:493–509CrossRefGoogle Scholar
  5. 5.
    Ricart AD, Tolcher AW (2007) Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4:245–255CrossRefPubMedGoogle Scholar
  6. 6.
    Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A et al (2007) Imaging tumors with an albumin-binding fab, a novel tumor-targeting agent. Cancer Res 67:254–261CrossRefPubMedGoogle Scholar
  7. 7.
    (a) Gerber HP, Senter PD, Grewal IS (2009) Antibody drug-conjugates targeting the tumor vasculature: Current and future developments. mAbs 1:247–253;(b) Teicher BA, Chari RV (2011) Antibody conjugate therapeutics: challenges and potential. Clin. Canc. Res. 7:6389-6397; (c) Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64:15-29; d) Chari RV, Miller ML, Widdison WC (2014) Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed 53:3796–3827Google Scholar
  8. 8.
    Lambert JM (2013) Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 76:248–262CrossRefPubMedGoogle Scholar
  9. 9.
    Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM (2012) Glutathione levels in human tumors. Biomarkers 17:671–691CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mills BJ, Lang CA (1992) Differential distribution of free and bound glutathione and cysteine in human blood. Biochem Pharmacol 52:401–406CrossRefGoogle Scholar
  11. 11.
    (a) Thorpe PE, Wallace PM, Knowles PP, Relf MG, Brown AN, Watson GJ, Knyba RE, Wawrzynczak EJ, Blakey DC (1987) New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res 47:5924–5931;(b) Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M, et al (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjugate Chem 22:717–727Google Scholar
  12. 12.
    Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK et al (2010) Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70:2528–2537CrossRefPubMedGoogle Scholar
  13. 13.
    Zucker S (1988) A critical appraisal of the role of proteolytic enzymes in Cancer invasion: emphasis on tumor surface proteinases. Cancer Investig 6:219–231CrossRefGoogle Scholar
  14. 14.
    Choi KY, Swierczewska M, Lee S, Chen X (2012) Protease-activated drug development. Theranostics 2:156–178CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30:631–637CrossRefPubMedGoogle Scholar
  16. 16.
    Jain N, Smith SW, Ghone S, Tomczuk B (2015) Current ADC linker chemistry. Pharm Res 32:3526–3540CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S et al (2009) Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res 69:2358–2364CrossRefPubMedGoogle Scholar
  18. 18.
    Hong EE, Erickson H, Lutz RJ, Whiteman KR, Jones G, Kovtun Y et al (2015) Design of Coltuximab Ravtansine, a CD19-targeting antibody-drug conjugate (ADC) for the treatment of B-cell malignancies: structure-activity relationships and preclinical evaluation. Mol Pharm 12:1703–1716CrossRefPubMedGoogle Scholar
  19. 19.
    Armitage JO, Gascoyne RD, Lunning MA, Cavalli F (2017) Non-Hodgkin lymphoma. Lancet 390:298CrossRefPubMedGoogle Scholar
  20. 20.
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ (1989) Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49:4906–4912PubMedGoogle Scholar
  21. 21.
    Dijoseph JF, Dougher MM, Armellino DC, Kalyandrug L, Kunz A, Boghaert ER et al (2007) CD20-specific antibody-targeted chemotherapy of non-Hodgkin's B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol Immunother 56:1107–1117CrossRefPubMedGoogle Scholar
  22. 22.
    Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB et al (2016) Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res 76:2710–2719CrossRefPubMedGoogle Scholar
  23. 23.
    Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y et al (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9:802–811PubMedGoogle Scholar
  24. 24.
    Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083PubMedGoogle Scholar
  25. 25.
    Thiry A, Dogne JM, Masereel B, Supuran CT (2006) Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci 27:566–573CrossRefPubMedGoogle Scholar
  26. 26.
    Krall N, Pretto F, Decurtins W, Bernardes GJ, Supuran CT, Neri D (2014) A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew Chem Int Ed 53:4231–4235CrossRefGoogle Scholar
  27. 27.
    (a) Cazzamalli S, Dal Corso A, Neri D (2016) Acetazolamide serves as selective delivery vehicle for dipeptide-linked drugs to renal cell carcinoma. Mol Cancer Ther 15:2926-2935; (b) Cazzamalli S, Dal Corso A, Neri D (2017) Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J Control Release 246:39–45CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Petrul HM, Schatz CA, Kopitz CC, Adnane L, TJ MC, Trail P et al (2012) Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther 11:340–349CrossRefPubMedGoogle Scholar
  29. 29.
    Clinical Study Report No. PH-37705, BAY 79-4620 / 12671: Bayer HealthCare (2014)Google Scholar
  30. 30.
    Nagy JA, Brown LF, Senger DR, Lanir N, Van de Water L, Dvorak AM et al (1989) Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948:305–326PubMedGoogle Scholar
  31. 31.
    Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH (1979) Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in Guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J Natl Cancer Inst 62:1459–1472PubMedGoogle Scholar
  32. 32.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659CrossRefPubMedGoogle Scholar
  33. 33.
    Yasunaga M, Manabe S, Matsumura Y (2011) New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 102:1396–1402CrossRefPubMedGoogle Scholar
  34. 34.
    Yasunaga M, Manabe S, Tarin D, Matsumura Y (2011) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 22:1776–1783CrossRefPubMedGoogle Scholar
  35. 35.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558CrossRefPubMedGoogle Scholar
  36. 36.
    Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520CrossRefPubMedGoogle Scholar
  37. 37.
    (a) Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA. 91:5657–5661;(b) Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, Old LJ. (1988) Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci USA 85:3110–3114; (c) Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, et al (1993) Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53:3327–3335Google Scholar
  38. 38.
    (a) Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al (1994) Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 12:1193–1203; (b) Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C, et al (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26:44–48; (c) Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al (2003) A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 9:1639–1647Google Scholar
  39. 39.
    Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C et al (2008) Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res 14:4584–4592CrossRefGoogle Scholar
  40. 40.
    Satoh K, Hata M, Yokota H (2002) A novel member of the leucine-rich repeat superfamily induced in rat astrocytes by beta-amyloid. Biochem Biophys Res Commun 290:756–762CrossRefPubMedGoogle Scholar
  41. 41.
    Satoh K, Hata M, Yokota H (2004) High lib mRNA expression in breast carcinomas. DNA Res 11:199–203CrossRefPubMedGoogle Scholar
  42. 42.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825CrossRefPubMedGoogle Scholar
  43. 43.
    Gish KC, Hickson JA, Purcell JW, Morgan-Lappe SE (2015) Anti-huLRRC15 Antibody Drug Conjugates and methods for their use. WO2017095805A1Google Scholar
  44. 44.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  45. 45.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  46. 46.
    Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A (2014) The chemistry, physiology and pathology of pH in cancer. Philos Trans R Soc B 369:–20130099CrossRefGoogle Scholar
  47. 47.
    (a) Yamada K, Nomura N, Yamano A, Yamada Y, Wakamatsu N (2012) Identification and characterization of splicing variants of PLEKHA5 (Plekha5) during brain development. Gene 492:270–275;(b) Yousaf N, Deng Y, Kang Y, Riede H (2001) Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. J Biol Chem 276:40940–40948CrossRefPubMedGoogle Scholar
  48. 48.
    Ladomery M (2013) Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013:463786CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64:7647–7654CrossRefPubMedGoogle Scholar
  50. 50.
    Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33:5311–5318CrossRefPubMedGoogle Scholar
  51. 51.
    Elias AP, Dias S (2008) Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron 1:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gaus G, Demir-Weusten AY, Schmitz U, Bose P, Kaufmann P, Huppertz B, Frank HG (2002) Extracellular pH modulates the secretion of fibronectin isoforms by human trophoblast. Acta Histochem 104:51–63CrossRefPubMedGoogle Scholar
  53. 53.
    Borsi L, Allemanni G, Gaggero B, Zardi L (1996) Extracellular pH controls pre-mRNA alternative splicing of tenascin-C in normal, but not in malignantly transformed, cells. Int J Cancer 66:632–635CrossRefPubMedGoogle Scholar
  54. 54.
    Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377CrossRefPubMedGoogle Scholar
  55. 55.
    Colombi M, Barlati S, Kornblihtt A, Baralle FE, Vaheri A (1986) A family of fibronectin mRNAs in human normal and transformed cells. Biochim Biophys Acta 868:207–214CrossRefPubMedGoogle Scholar
  56. 56.
    Paul JI, Schwarzbauer JE, Tamkun JW, Hynes RO (1986) Cell-type-specific fibronectin subunits generated by alternative splicing. J Biol Chem 261:12258–12265PubMedGoogle Scholar
  57. 57.
    (a) Borsi L, Carnemolla B, Castellani P, Rosellini C, et al (1987) Monoclonal antibodies in the analysis of fibronectin isoforms generated by alternative splicing of mRNA precursors in normal and transformed human cells. J Cell Biol 104:595–600;(b) Zardi L1, Carnemolla B, Siri A, Petersen TE, et al (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–2342Google Scholar
  58. 58.
    Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 5:612–618CrossRefGoogle Scholar
  59. 59.
    Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–1148CrossRefPubMedGoogle Scholar
  60. 60.
    Borsi L, Castellani P, Allemanni G, Neri D, Zardi L (1998) Preparation of phage antibodies to the ED-A domain of human fibronectin. Exp Cell Res 240:244–251CrossRefPubMedGoogle Scholar
  61. 61.
    Matsuura H, Hakomori S (1985) The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci U S A 82:6517–6521CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kumra H, Reinhardt DP (2016) Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev 97:101–110CrossRefPubMedGoogle Scholar
  63. 63.
    Erickson HP (1989) Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu Rev Cell Biol 5:71–92CrossRefPubMedGoogle Scholar
  64. 64.
    Sage EH, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 23:14831–14834Google Scholar
  65. 65.
    Borsi L, Balza E, Gaggero B, Allemagni I, Zardi L (1995) The alternative splicing pattern of the tenascin-C pre-mRNA is controlled by the extracellular pH. J Biol Chem 270:6243–6245CrossRefPubMedGoogle Scholar
  66. 66.
    Reardon DA, Akabani G, Coleman RE, Friedman AH et al (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397CrossRefPubMedGoogle Scholar
  67. 67.
    Rizzieri DA, Akabani G, Zalutsky MR, Coleman RE et al (2004) Phase 1 trial study of 131I-labeled chimeric 81C6 monoclonal antibody for the treatment of patients with non-Hodgkin lymphoma. Blood 104:642–648CrossRefPubMedGoogle Scholar
  68. 68.
    Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 21:21769–21776CrossRefGoogle Scholar
  69. 69.
    Brack SS, Silacci M, Birchler M, Neri D (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12:3200–3208CrossRefPubMedGoogle Scholar
  70. 70.
    Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B et al (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85CrossRefPubMedGoogle Scholar
  71. 71.
    Sauer S, Erba PA, Petrini M, Menrad A et al (eds) (2009) Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113:2265–2274CrossRefPubMedGoogle Scholar
  72. 72.
    Aloj L, D'Ambrosio L, Aurilio M, Morisco A et al (2014) Radioimmunotherapy with Tenarad, a 131I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 41:867–877CrossRefPubMedGoogle Scholar
  73. 73.
    Heuveling DA, de Bree R, Vugts DJ, Huisman MC, Giovannoni L, Hoekstra OS, Leemans CR, Neri D, van Dongen GA (2013) Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients. J Nucl Med 54:397–401CrossRefPubMedGoogle Scholar
  74. 74.
    Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rösli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413CrossRefPubMedGoogle Scholar
  75. 75.
    Schwager K, Kaspar M, Bootz F, Marcolongo R, Paresce E, Neri D, Trachsel E (2009) Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res Ther 11:R142CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bernardes GJ, Casi G, Trüssel S, Hartmann I, Schwager K, Scheuermann J, Neri D (2012) A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed 51:941–944CrossRefGoogle Scholar
  77. 77.
    Austin CD, Wen X, Gazzard L, Nelson C, Scheller RH, Scales SJ (2005) Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc Natl Acad Sci U S A 102:17987–17992CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Perrino E, Steiner M, Krall N, Bernardes GJ, Pretto F, Casi G, Neri D (2014) Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res 74:2569–2578CrossRefPubMedGoogle Scholar
  79. 79.
    Gébleux R, Wulhfard S, Casi G, Neri D (2015) Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther 14:2606–2612CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gébleux R, Stringhini M, Casanova R, Soltermann A, Neri D (2016) Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer 140:1670–1679CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Dal Corso A, Cazzamalli S, Gébleux R, Mattarella M, Neri D (2017) Protease-cleavable linkers modulate the anticancer activity of noninternalizing antibody-drug conjugates. Bioconjug Chem 28:1826–1833CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784CrossRefPubMedGoogle Scholar
  83. 83.
    Dal Corso A, Pignataro L, Belvisi L, Gennari C (2016) αvβ3 integrin-targeted peptide/Peptidomimetic-drug conjugates: in-depth analysis of the linker technology. Curr Top Med Chem 16:314–329CrossRefPubMedGoogle Scholar
  84. 84.
    Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, Raab HE, Spencer S, Zheng B (2015) The cryptophycins as potent payloads for antibody drug conjugates. Bioorg Med Chem Lett 25:864–868CrossRefPubMedGoogle Scholar
  85. 85.
    Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J et al (2017) Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-Maytansinoid conjugates. Bioconjug Chem 28:1371–1381CrossRefPubMedGoogle Scholar
  86. 86.
    Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD et al (2015) A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75:3365–3372CrossRefPubMedGoogle Scholar
  87. 87.
    Bianchi ME (2014) Killing cancer cells, twice with one shot. Cell Death Differ 21:1–2CrossRefPubMedGoogle Scholar
  88. 88.
    Gerber HP, Sapra P, Loganzo F, May C (2016) Combining antibody-drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol 12:1–6CrossRefGoogle Scholar
  89. 89.
    Litterman AJ, Zellmer DM, Grinnen KL, Hunt MA, Dudek AZ, Salazar AM, Ohlfest JR (2013) Profound impairment of adaptive immune responses by alkylating chemotherapy. J Immunol 190:6259–6268CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584CrossRefPubMedGoogle Scholar
  91. 91.
    List T, Casi G, Neri D (2014) A chemically defined Trifunctional antibody-cytokine-drug conjugate with potent antitumor activity. Mol Cancer Ther 13:2641–2652CrossRefPubMedGoogle Scholar
  92. 92.
    Gutbrodt KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W, Berdel WE, Neri D (2013) Antibody-based delivery of Interleukin-2 to Neovasculature has potent activity against acute myeloid leukemia. Sci Transl Med 5:201ra118CrossRefPubMedGoogle Scholar
  93. 93.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to Cancer immunotherapy. Cell 168:707–723CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hynes RO (2014) Stretching the boundaries of extracellular matrix research. Nat Rev Mol Cell Biol 15:761–763CrossRefPubMedGoogle Scholar
  95. 95.
    Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8:659–671CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Bakhtiar R (2016) Antibody drug conjugates. Biotechnol Lett 38:1655–1664CrossRefPubMedGoogle Scholar
  97. 97.
    Cohen R, Vugts DJ, Visser GW, Stigter-van Walsum M et al (2014) Development of novel ADCs: conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. Cancer Res 74:5700–5710CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Dal Corso
    • 1
  • Samuele Cazzamalli
    • 1
  • Dario Neri
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland

Personalised recommendations