Advertisement

Site-Specific Antibody-Drug Conjugates

  • Feng Tian
  • Dowdy Jackson
  • Yun Bai
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Site-specific antibody drug conjugates are the next stage in the evolution of antibody drug conjugates. The enhanced in vivo stability, potent anti-tumor efficacy and favorable toxicology profiles make site-specific ADCs an attractive option for treating cancer patients. The well-defined structure provides a base for further optimization through structure-property-relationship. We provide a comprehensive review of site-specific ADC technologies and offer insights into the future direction of ADCs.

Keywords

Site-specific Antibody drug conjugate ADC Bioconjugation 

References

  1. 1.
    Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14CrossRefPubMedGoogle Scholar
  2. 2.
    Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287CrossRefPubMedGoogle Scholar
  3. 3.
    Sanz L, Alvarez-Vallina L (2005) Antibody-based antiangiogenic cancer therapy. Expert Opin Ther Targets 9(6):1235–1245CrossRefPubMedGoogle Scholar
  4. 4.
    Roviello G et al (2017) The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer 75:245–258CrossRefPubMedGoogle Scholar
  5. 5.
    Azoury SC, Straughan DM, Shukla V (2015) Immune checkpoint inhibitors for cancer therapy: clinical efficacy and safety. Curr Cancer Drug Targets 15(6):452–462CrossRefPubMedGoogle Scholar
  6. 6.
    Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330CrossRefPubMedGoogle Scholar
  7. 7.
    Ho RJ, Chien J (2014) Trends in translational medicine and drug targeting and delivery: new insights on an old concept-targeted drug delivery with antibody-drug conjugates for cancers. J Pharm Sci 103(1):71–77CrossRefPubMedGoogle Scholar
  8. 8.
    Polakis P (2016) Antibody drug conjugates for Cancer therapy. Pharmacol Rev 68(1):3–19CrossRefPubMedGoogle Scholar
  9. 9.
    Beck A et al (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337CrossRefPubMedGoogle Scholar
  10. 10.
    Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159CrossRefPubMedGoogle Scholar
  11. 11.
    Peters C, Brown S (2015) Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 35(4):e00225CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Varki NM, Reisfeld RA, Walker LE (1984) Antigens associated with a human lung adenocarcinoma defined by monoclonal antibodies. Cancer Res 44(2):681–687PubMedGoogle Scholar
  13. 13.
    Trail PA et al (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261(5118):212–215CrossRefPubMedGoogle Scholar
  14. 14.
    Herbertson RA et al (2009) Phase I biodistribution and pharmacokinetic study of Lewis Y-targeting immunoconjugate CMD-193 in patients with advanced epithelial cancers. Clin Cancer Res 15(21):6709–6715CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson D, Stover D (2015) Using the lessons learned from the clinic to improve the preclinical development of antibody drug conjugates. Pharm Res 32(11):3458–3469CrossRefPubMedGoogle Scholar
  16. 16.
    Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659–671CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lyon RP et al (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33(7):733–735CrossRefPubMedGoogle Scholar
  18. 18.
    Yurkovetskiy AV et al (2015) A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75(16):3365–3372CrossRefPubMedGoogle Scholar
  19. 19.
    Ogitani Y et al (2016) DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22(20):5097–5108CrossRefPubMedGoogle Scholar
  20. 20.
    Junutula JR et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932CrossRefPubMedGoogle Scholar
  21. 21.
    Hamblett KJ et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070CrossRefPubMedGoogle Scholar
  22. 22.
    Tian F et al (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng H et al (2012) Thiol reactive probes and chemosensors. Sensors (Basel) 12(11):15907–15946CrossRefGoogle Scholar
  24. 24.
    McDonagh CF et al (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19(7):299–307CrossRefPubMedGoogle Scholar
  25. 25.
    Junutula JR et al (2008) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332(1–2):41–52CrossRefPubMedGoogle Scholar
  26. 26.
    Woo HJ et al (1991) Carbohydrate-binding protein 35 (mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186. J Biol Chem 266(28):18419–18422PubMedGoogle Scholar
  27. 27.
    Wootton SK, Yoo D (2003) Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages. J Virol 77(8):4546–4557CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alley SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19(3):759–765CrossRefPubMedGoogle Scholar
  29. 29.
    Baldwin AD, Kiick KL (2011) Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem 22(10):1946–1953CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shen BQ et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189CrossRefPubMedGoogle Scholar
  31. 31.
    Lyon RP et al (2014) Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 32(10):1059–1062CrossRefPubMedGoogle Scholar
  32. 32.
    Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284(2):723–727CrossRefPubMedGoogle Scholar
  33. 33.
    Hofer T et al (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48(50):12047–12057CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hofer T et al (2008) An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A 105(34):12451–12456CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li X, Yang J, Rader C (2014) Antibody conjugation via one and two C-terminal selenocysteines. Methods 65(1):133–138CrossRefPubMedGoogle Scholar
  36. 36.
    Yuan J et al (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 103(50):18923–18927CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6(6):809–815CrossRefPubMedGoogle Scholar
  38. 38.
    Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408CrossRefPubMedGoogle Scholar
  39. 39.
    Hallam TJ, Smider VV (2014) Unnatural amino acids in novel antibody conjugates. Future Med Chem 6(11):1309–1324CrossRefPubMedGoogle Scholar
  40. 40.
    Cho H et al (2011) Optimized clinical performance of growth hormone with an expanded genetic code. Proc Natl Acad Sci U S A 108(22):9060–9065CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kern JC et al (2016) Novel phosphate modified Cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27(9):2081–2088CrossRefPubMedGoogle Scholar
  42. 42.
    Zimmerman ES et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361CrossRefPubMedGoogle Scholar
  43. 43.
    Axup JY et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kern JC et al (2016) Discovery of pyrophosphate Diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc 138(4):1430–1445CrossRefPubMedGoogle Scholar
  45. 45.
    VanBrunt MP et al (2015) Genetically encoded Azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26(11):2249–2260CrossRefPubMedGoogle Scholar
  46. 46.
    Jackson D et al (2014) In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One 9(1):e83865CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ozawa K et al (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418(4):652–656CrossRefPubMedGoogle Scholar
  48. 48.
    Hong SH, Kwon YC, Jewett MC (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:34CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Thomann M et al (2015) In vitro glycoengineering of IgG1 and its effect on fc receptor binding and ADCC activity. PLoS One 10(8):e0134949CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu SD et al (2015) Afucosylated antibodies increase activation of FcgammaRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res 3(2):173–183CrossRefPubMedGoogle Scholar
  51. 51.
    Uppal H et al (2015) Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res 21(1):123–133CrossRefPubMedGoogle Scholar
  52. 52.
    Li F et al (2017) Tumor associated macrophages can contribute to antitumor activity through FcgammaRmediated processing of antibody-drug conjugates. Mol Cancer TherGoogle Scholar
  53. 53.
    Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3(6):568–576CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ramakrishnan B, Qasba PK (2002) Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem 277(23):20833–20839CrossRefPubMedGoogle Scholar
  55. 55.
    Boeggeman E et al (2009) Site specific conjugation of fluoroprobes to the remodeled fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20(6):1228–1236CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sochaj AM, Swiderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 33(6 Pt 1):775–784CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou Q et al (2014) Site-specific antibody-drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520CrossRefPubMedGoogle Scholar
  58. 58.
    Jeger S et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl 49(51):9995–9997CrossRefPubMedGoogle Scholar
  59. 59.
    Strop P et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167CrossRefPubMedGoogle Scholar
  60. 60.
    Popp MW, Antos JM, Ploegh HL (2009) Site-specific protein labeling via sortase-mediated transpeptidation. Curr Protoc Protein Sci. Chapter 15: p. Unit 15.3Google Scholar
  61. 61.
    Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8(3):226–234CrossRefPubMedGoogle Scholar
  62. 62.
    Swee LK et al (2013) Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 110(4):1428–1433CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Beerli RR et al (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10(7):e0131177CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rabuka D et al (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7(6):1052–1067CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Agarwal P et al (2013) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24(6):846–851CrossRefPubMedGoogle Scholar
  66. 66.
    Drake PM et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25(7):1331–1341CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schumacher D et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed Engl 54(46):13787–13791CrossRefPubMedGoogle Scholar
  68. 68.
    Prota AE et al (2013) Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 200(3):259–270CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Behrens CR et al (2015) Antibody-drug conjugates (ADCs) derived from Interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 12(11):3986–3998CrossRefPubMedGoogle Scholar
  70. 70.
    Bryden F et al (2014) Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment. Bioconjug Chem 25(3):611–617CrossRefPubMedGoogle Scholar
  71. 71.
    Maruani A et al (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bryant P et al (2015) In vitro and in vivo evaluation of cysteine Rebridged Trastuzumab-MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol Pharm 12(6):1872–1879CrossRefPubMedGoogle Scholar
  73. 73.
    Hui JZ, Tsourkas A (2014) Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG. Bioconjug Chem 25(9):1709–1719CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sakamoto T et al (2010) Enzyme-mediated site-specific antibody-protein modification using a ZZ domain as a linker. Bioconjug Chem 21(12):2227–2233CrossRefPubMedGoogle Scholar
  75. 75.
    Polu KR, Lowman HB (2014) Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 14(8):1049–1053CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ambrx, Inc.La JollaUSA

Personalised recommendations