Advertisement

Introduction: Motivations for Next-Generation ADCs

  • Marc Damelin
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

The new and emerging ADC technologies together with the field’s cumulative experience provide new opportunities for ADCs and make them a more promising therapeutic modality than ever before. Despite a rapidly evolving clinical landscape in oncology, there is substantial unmet clinical need that could be addressed by next-generation ADCs. ADCs are also being explored to combat other diseases. This introductory chapter provides context for the key innovations of next-generation ADCs described throughout the volume. A framework for designing and interpreting preclinical pharmacology studies is proposed such that emerging technologies can be rigorously evaluated and molecules can be judiciously optimized.

Keywords

Preclinical studies In vivo Pharmacology Oncology Challenge Innovation Tool Technology Patient-derived xenograft PDX 

References

  1. 1.
    Bialucha CU, Collins SD, Li X, Saxena P, Zhang X, Dürr C, Lafont B, Prieur P, Shim Y, Mosher R, Lee D, Ostrom L, Hu T, Bilic S, Rajlic IL, Capka V, Jiang W, Wagner JP, Elliott G, Veloso A, Piel JC, Flaherty MM, Mansfield KG, Meseck EK, Rubic-Schneider T, London AS, Tschantz WR, Kurz M, Nguyen D, Bourret A, Meyer MJ, Faris JE, Janatpour MJ, Chan VW, Yoder NC, Catcott KC, McShea MA, Sun X, Gao H, Williams J, Hofmann F, Engelman JA, Ettenberg SA, Sellers WR, Lees E (2017) Discovery and optimization of HKT288, a cadherin-6-targeting ADC for the treatment of ovarian and renal cancers. Cancer Discov 7(9):1030–1045.  https://doi.org/10.1158/2159-8290.CD-16-1414. Epub 2017 May 19CrossRefPubMedGoogle Scholar
  2. 2.
    Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330.  https://doi.org/10.1038/nature21349 CrossRefPubMedGoogle Scholar
  3. 3.
    Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, Park A, Aguilar J, Ernstoff E, Charati M, Dushin R, Aujay M, Lee C, Ramoth H, Milton M, Hampl J, Lazetic S, Pulito V, Rosfjord E, Sun Y, King L, Barletta F, Betts A, Guffroy M, Falahatpisheh H, O’Donnell CJ, Stull R, Pysz M, Escarpe P, Liu D, Foord O, Gerber HP, Sapra P, Dylla SJ (2017) A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med 9(372):pii: eaag2611.  https://doi.org/10.1126/scitranslmed.aag2611 CrossRefGoogle Scholar
  4. 4.
    Damelin M, Zhong W, Myers J, Sapra P (2015) Evolving strategies for target selection for antibody-drug conjugates. Pharm Res 32(11):3494–3507.  https://doi.org/10.1007/s11095-015-1624-3. Epub 2015 Jan 15CrossRefPubMedGoogle Scholar
  5. 5.
    Gerber HP, Koehn FE, Abraham RT (2013) The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 30(5):625–639.  https://doi.org/10.1039/c3np20113a CrossRefPubMedGoogle Scholar
  6. 6.
    Lambert JM, Morris CQ (2017) Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 34(5):1015–1035.  https://doi.org/10.1007/s12325-017-0519-6. Epub 2017 Mar 30CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mosher R, Poling L, Qin L, Bodyak N, Bergstrom D (2017) Relationship of NaPi2b expression and efficacy of XMT-1536, a NaPi2b targeting antibody-drug conjugate (ADC), in an unselected panel of human primary ovarian mouse xenograft models. Presentation at AACR-NCI-EORTC international conference, Philadelphia, 26–30 October 2017Google Scholar
  8. 8.
    Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, Desai R, Escarpe PA, Hampl J, Laysang A, Liu D, Lopez-Molina J, Milton M, Park A, Pysz MA, Shao H, Slingerland B, Torgov M, Williams SA, Foord O, Howard P, Jassem J, Badzio A, Czapiewski P, Harpole DH, Dowlati A, Massion PP, Travis WD, Pietanza MC, Poirier JT, Rudin CM, Stull RA, Dylla SJ (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 7(302):302ra136.  https://doi.org/10.1126/scitranslmed.aac9459 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29CrossRefPubMedGoogle Scholar
  10. 10.
    Tolcher AW (2016) Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol 27(12):2168–2172.  https://doi.org/10.1093/annonc/mdw424. Epub 2016 Oct 11CrossRefPubMedGoogle Scholar
  11. 11.
    Xu Z, Pothula SP, Wilson JS, Apte MV (2014) Pancreatic cancer and its stroma: a conspiracy theory. World J Gastroenterol 20(32):11216–11229.  https://doi.org/10.3748/wjg.v20.i32.11216 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marc Damelin
    • 1
  1. 1.Mersana Therapeutics, Inc.CambridgeUSA

Personalised recommendations