Comparison of Acceptance Criteria in Randomized Local Searches

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)

Abstract

One key component of stochastic local search algorithms is the acceptance criterion that determines whether a solution is accepted as the new current solution or it is discarded. One of the most studied local search algorithms is simulated annealing. It often uses the Metropolis condition as acceptance criterion, which always accepts equal or better quality solutions and worse ones with a probability that depends on the amount of worsening and a parameter called temperature. After the introduction of simulated annealing several other acceptance criteria have been introduced to replace the Metropolis condition, some being claimed to be simpler and better performing. In this article, we evaluate various such acceptance criteria from an experimental perspective. We first tune the numerical parameters of the algorithms using automatic algorithm configuration techniques for two test problems, the quadratic assignment problem and a permutation flowshop problem. Our experimental results show that, while results may differ depending on the specific problem, the Metropolis condition and the late acceptance hill climbing rule are among the choices that obtain the best results.

Notes

Acknowledgments

We acknowledge support from the COMEX project (P7/36) within the IAP Programme of the BelSPO. Thomas Stützle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a senior research associate.

References

  1. 1.
    Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables on a computer and their application to other scheduling problems. Comput. J. 3(4), 237–245 (1961)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing for function optimization. Technometrics 28(3), 209–217 (1986)CrossRefMATHGoogle Scholar
  3. 3.
    Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Handbook of Combinatorial Optimization, vol. 2, pp. 241–338. Kluwer Academic Publishers (1998)Google Scholar
  4. 4.
    Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical report CSM-192, University of Stirling (2012)Google Scholar
  5. 5.
    Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Eur. J. Oper. Res. 258(1), 70–78 (2017)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, R.M., Hsieh, F.R.: An exchange local search heuristic based scheme for permutation flow shop problems. Appl. Math. Inf. Sci. 8(1), 209–215 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)CrossRefMATHGoogle Scholar
  8. 8.
    Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)MATHGoogle Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-44973-4_36 CrossRefGoogle Scholar
  14. 14.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  15. 15.
    Moscato, P., Fontanari, J.F.: Stochastic versus deterministic update in simulated annealing. Phys. Lett. A 146(4), 204–208 (1990)CrossRefGoogle Scholar
  16. 16.
    Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the \(m\)-machine, \(n\)-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)CrossRefGoogle Scholar
  17. 17.
    Ogbu, F.A., Smith, D.K.: The application of the simulated annealing algorithm to the solution of the n/m/C max flowshop problem. Comput. Oper. Res. 17(3), 243–253 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem with flowtime minimization. Eur. J. Oper. Res. 222(1), 31–43 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pan, Q.K., Ruiz, R.: A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput. Oper. Res. 40(1), 117–128 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)CrossRefMATHGoogle Scholar
  22. 22.
    Taillard, É.D.: Comparison of iterative searches for the quadratic assignment problem. Location Sci. 3(2), 87–105 (1995)CrossRefMATHGoogle Scholar
  23. 23.
    Černý, V.: A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRIDIA, CoDEUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations