Advertisement

Mesenchymal Stem Cells as Endogenous Regulators of Inflammation

  • Hafsa Munir
  • Lewis S. C. Ward
  • Helen M. McGettrick
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)

Abstract

This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.

Keywords

Mesenchymal stem cells Endothelial cells Neutrophils Lymphocytes 

Notes

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Funding

HM and LSCW were supported by BBSRC and MRC PhD studentships, respectively. HMM was supported by an Arthritis Research UK Career Development Fellowship (19899) and Systems Science for Health, University of Birmingham (5212).

References

  1. 1.
    Pal R, Hanwate M, Jan M, Totey S. Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2009;3:163–74.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24(2):462–71.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Christodoulou I, Kolisis FN, Papaevangeliou D, Zoumpourlis V. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for Cytotherapy. Stem Cells Int. 2013;2013:246134.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jin H, Bae Y, Kim M, Kwon S-J, Jeon H, Choi S, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14:17986–8001.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008;26:182–92.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13:1173–83.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chen P-M, Yen M-L, Liu K-J, Sytwu H-K, Yen B-L. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci. 2011;18(1):49.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chang C-J, Yen M-L, Chen Y-C, Chien C-C, Huang H-I, Bai C-H, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 2006;24:2466–77.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ahn JY, Park G, Shim JS, Lee JW, Oh IH. Intramarrow injection of beta-catenin-activated, but not naive mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow. Exp Mol Med. 2010;42(2):122–31.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol. 2010;88(5):1005–15.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26:151–62.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010;184(5):2321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Luk F, Carreras-Planella L, Korevaar SS, de Witte SFH, Borràs FE, Betjes MGH, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol. 2017;8:1042.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12:383–96.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jiang X-X, Zhang Y, Liu B, Zhang S-X, Wu Y, Yu X-D, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34(4):590–601.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37:1445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010;5(2):e9252.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    François M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of Indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20:187–95.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21(2):216–25.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007;25:1753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Gu YZ, Xue Q, Chen YJ, Yu GH, de Qing M, Shen Y, et al. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol. 2013;74(3):267–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008;26:279–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Larghero J, Farge D, Braccini A, Lecourt S, Scherberich A, Fois E, et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis. 2008;67(4):443–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.PubMedCrossRefGoogle Scholar
  37. 37.
    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Ramasamy R, Fazekasova H, Lam EW-F, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6.PubMedCrossRefGoogle Scholar
  42. 42.
    English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008;115(1):50–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Rahbarghazi R, Nassiri SM, Khazraiinia P, Kajbafzadeh A, Ahmadi SH, Mohammadi E, et al. Juxtacrine and paracrine interactions of rat marrow derived mesenchymal stem cells, muscle derived satellite cells and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev. 2013;22(6):855–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen L, Tredget EE, Wu PYG, Wu Y, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dhar K, Dhar G, Majumder M, Haque I, Mehta S, Van Veldhuizen PJ, et al. Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1. Mol Cancer. 2010;9:209.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Hematop Stem Cells. 2009;113(18):4197–205.Google Scholar
  47. 47.
    Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One. 2011;6(9):e25171.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhao YD, Ohkawara H, Vogel SM, Malik AB, Zhao Y-Y. Bone marrow-derived progenitor cells prevent thrombin-induced increase in lung vascular permeability. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L36–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao YD, Ohkawara H, Rehman J, Wary KK, Vogel SM, Minshall RD, et al. Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling. Circ Res. 2009;105(7):696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, et al. Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/b-catenin signaling. Stem Cells Dev. 2010;20(1):89–101.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Luu NT, McGettrick HM, Buckley CD, Newsome P, Ed Rainger G, Frampton J, et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to down-regulation of cytokine-iNduced leukocyte recruitment. Stem Cells. 2013;31:2690–702.PubMedCrossRefGoogle Scholar
  52. 52.
    Munir H, Rainger GE, Nash GBMH, McGettrick H. Analyzing the effects of stromal cells on the recruitment of leukocytes from flow. J Vis Exp. 2015;95:e52480.Google Scholar
  53. 53.
    Munir H, Luu N-T, Clarke LSC, Nash GB, McGettrick HM. Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium. PLoS One. 2016;11(5):e0155161.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Tormin A, Li O, Brune JC, Walsh S, Schütz B, Ehinger M, et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011;117:5067–77.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014;5:148.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379(4):1114–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell. 2008;2(4):392–403.PubMedCrossRefGoogle Scholar
  59. 59.
    Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011;108(16):6503–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7(6):718–29.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. Jacobs R, editor. PLoS One. 2014;9(9):e106903.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, et al. The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 2014;5:e1295.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Khan I, Zhang L, Mohammed M, Archer FE, Abukharmah J, Yuan Z, et al. Effects of Wharton’s jelly-derived mesenchymal stem cells on neonatal neutrophils. J Inflamm Res. 2014;8:1–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Letourneau PA, Menge TD, Wataha KA, Wade CE, Cox SC Jr, Holcomb JB, et al. Human bone marrow derived mesenchymal stem cells regulate leukocyte-endothelial interactions and activation of transcription factor. J Tissue Sci Eng. 2011;3:1–7.Google Scholar
  69. 69.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.PubMedCrossRefGoogle Scholar
  70. 70.
    Rubtsov Y, Goryunov K, Romanov A, Suzdaltseva Y, Sharonov G, Tkachuk V. Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: a new insight into the role of ICAM-1. Stem Cells Int. 2017;2017:6516854.Google Scholar
  71. 71.
    Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, et al. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells. 2015;33(3):880–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity. 2010;32(1):129–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Schena F, Gambini C, Gregorio A, Mosconi M, Reverberi D, Gattorno M, et al. Interferon-γ–dependent inhibition of B cell activation by bone marrow–derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2010;62(9):2776–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Wu J, Ji C, Cao F, Lui H, Xia B, Wang L. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep. 2017;37(2):BSR20160436.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Detry O, Vandermeulen M, Delbouille M-H, Somja J, Bletard N, Briquet A, et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J Hepatol. 2017;67(1):47–55.PubMedCrossRefGoogle Scholar
  76. 76.
    Sheriff L, Alanazi A, Ward LSC, Ward C, Munir H, Rayes J, et al. Origin-specific adhesive interactions of mesenchymal stem cells with platelets influence their behaviour after infusion. Stem Cells. 2018;  https://doi.org/10.1002/stem.2811. [Epub ahead of print]
  77. 77.
    Langer HF, Stellos K, Steingen C, Froihofer A, Schönberger T, Krämer B, et al. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro. J Mol Cell Cardiol. 2009;47(2):315–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang L, Song XH, Liu P, Zeng CL, Huang ZS, Zhu LJ, et al. Platelet-mediated mesenchymal stem cells homing to the lung reduces monocrotaline-induced rat pulmonary hypertension. Cell Transplant. 2012;21(7):1463–75.PubMedCrossRefGoogle Scholar
  79. 79.
    Teo GSL, Yang Z, Carman CV, Karp JM, Lin CP. Intravital imaging of mesenchymal stem cell trafficking and association with platelets and neutrophils. Stem Cells. 2015;33(1):265–77.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev. 2014;23(4):319–32.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells. 2016;34(3):601–13.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Potter DR, Miyazawa BY, Gibb SL, Deng X, Togaratti PP, Croze RH, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. J Trauma Acute Care Surg. 2018;84(2):245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci. 2014;71(12):2271–88.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kuravi SJ, McGettrick HM, Satchell SC, Saleem MA, Harper L, Williams JM, et al. Podocytes regulate neutrophil recruitment by glomerular endothelial cells via IL-6-mediated crosstalk. J Immunol. 2014;193(1):234–43.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Lally F, Smith E, Filer A, Stone MA, Shaw JS, Nash GB, et al. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum. 2005;52(11):3460–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    McGettrick HM, Smith E, Filer A, Kissane S, Salmon M, Buckley CD, et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur J Immunol. 2009;39:113–25.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2(1):a006429.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Parsonage G, Filer AD, Haworth O, Nash GB, Rainger GE, Salmon M, et al. A stromal address code defined by fibroblasts. Trends Immunol. 2005;26(3):150–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Abdel Aziz MT, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Ahmed HH, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem. 2007;40(12):893–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Semedo P, Correa-Costa M, Cenedeze MA, Malheiros DMAC, Dos Reis MA, Shimizu MH, et al. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells. 2009;27(12):3063–73.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Wu Y, Peng Y, Gao D, Feng C, Yuan X, Li H, et al. Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation. Int J Low Extrem Wounds. 2015;14(1):50–62.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Li L, Zhang Y, Li Y, Yu B, Xu Y, Zhao S, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int. 2008;21(12):1181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Park SJ, Kim KJ, Kim WU, Cho CS. Interaction of mesenchymal stem cells with fibroblast-like synoviocytes via cadherin-11 promotes the angiogenesis by enhanced secretion of placental growth factor. J Immunol. 2014;192(7):3003–10.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Yates CC, Rodrigues M, Nuschke A, Johnson ZI, Whaley D, Stolz D, et al. Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Res Ther. 2017;8(1):193.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13(6):558–69.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lee J, Abdeen AA, Kilian KA. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci Rep. 2014;4:5188.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637–44.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 2010;5:e9016.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110:91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, et al. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol. 2011;270:207–16.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY, et al. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem. 2011;286(28):25007–15.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141–50.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Papadaki HA, Kritikos HD, Gemetzi C, Koutala H, JCW M, Boumpas DT, et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood. 2002;99(5):1610–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kastrinaki M-C, Sidiropoulos P, Roche S, Ringe J, Lehmann S, Kritikos H, et al. Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann Rheum Dis. 2008;67:741–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 2010;62:2467–75.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Nie Y, Lau C, Lie A, Chan G, Mok M. Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus. 2010;19(7):850–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    El-Badri NS, Hakki A, Ferrari A, Shamekh R, Good RA. Autoimmune disease: is it a disorder of the microenvironment? Immunol Res. 2008;41(1):79–86.PubMedCrossRefGoogle Scholar
  112. 112.
    Tang Y, Xie H, Chen J, Geng L, Chen H, Li X, et al. Activated NF-kappaB in bone marrow mesenchymal stem cells from systemic lupus erythematosus patients inhibits osteogenic differentiation through downregulating Smad signaling. Stem Cells Dev. 2013;22(4):668–78.PubMedCrossRefGoogle Scholar
  113. 113.
    Jones BJ, Brooke G, Atkinson K, McTaggart SJ. Immunosuppression by placental Indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta. 2007;28(11–12):1174–81.PubMedCrossRefGoogle Scholar
  114. 114.
    Bahra P, Rainger GE, Wautier JL, Nguyet-Thin L, Nash GB. Each step during transendothelial migration of flowing neutrophils is regulated by the stimulatory concentration of tumour necrosis factor-alpha. Cell Adhes Commun. 1998;6:491–501.PubMedCrossRefGoogle Scholar
  115. 115.
    Filer A, Parsonage G, Smith E, Osborne C, Thomas AMC, Curnow SJ, et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 2006;54(7):2096–108.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20:655–67.PubMedCrossRefGoogle Scholar
  117. 117.
    Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259:150–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal stromal cells and toll-like receptor priming: a critical review. Immune Netw. 2017;17(2):89–102.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Köppel A, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells. 2009;27:909–19.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Tyndall A, Pistoia V. Mesenchymal stem cells combat sepsis. Nat Med. 2009;15:18–20.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Mallam E, Kemp K, Wilkins A, Rice C, Scolding N. Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis. Mult Scler. 2010;16(8):909–18.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Papadaki HA, Tsagournisakis M, Mastorodemos V, Pontikoglou C, Damianaki A, Pyrovolaki K, et al. Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis. Bone Marrow Transplant. 2005;36(12):1053–63.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Leijs MJC, van Buul GM, Lubberts E, Bos PK, Verhaar JAN, Hoogduijn MJ, et al. Effect of arthritic synovial fluids on the expression of immunomodulatory factors by mesenchymal stem cells: an explorative in vitro study. Front Immunol. 2012;3:231.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol. 2010;12(2):143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Goldfarb JW, Roth M, Han J. Myocardial fat deposition after left ventricular myocardial infarction: assessment by using MR water-fat separation imaging. Radiology. 2009;253(1):65–73.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004;5(4):219–26.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Arend WP, Mehta G, Antonioli AH, Takahashi M, Takahashi K, Stahl GL, et al. Roles of adipocytes and fibroblasts in activation of the alternative pathway of complement in inflammatory arthritis in mice. J Immunol. 2013;190(12):6423–33.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Clements KM, Ball AD, Jones HB, Brinckmann S, Read SJ, Murray F. Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. Osteoarthr Cartil. 2009;17(6):805–12.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Schweitzer ME, Falk a, Pathria M, Brahme S, Hodler J, Resnick D. MR imaging of the knee: can changes in the intracapsular fat pads be used as a sign of synovial proliferation in the presence of an effusion? Am J Roentgenol. 1993;160(4):823–6.CrossRefGoogle Scholar
  130. 130.
    Culbert AL, Chakkalakal SA, Theosmy EG, Brennan TA, Kaplan FS, Shore EM. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells. 2014;32(5):1289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009;20(7):1453–64.PubMedCrossRefGoogle Scholar
  132. 132.
    Zamolyi RQ, Souza P, Nascimento AG, Unni KK. Intraabdominal myositis ossificans: a report of 9 new cases. Int J Surg Pathol. 2006;14:37–41.Google Scholar
  133. 133.
    Munir H, Ward LSC, Sheriff L, Kemble S, Nayar S, Barone F, et al. Adipogenic differentiation of mesenchymal stem cells alters their immunomodulatory properties in a tissue-specific manner. Stem Cells. 2017;35(6):1636–46.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Munir H. Mesenchymal stem cells as endogenous regulators of leukocyte recruitment; the effects of differentiation. [PhD thesis on the Internet]. Birmingham: University of Birmingham; 2016 [cited 2018 Feb 28]. Available from: http://etheses.bham.ac.uk/.
  135. 135.
    McGettrick HM, Buckley CD, Filer A, Rainger GE, Nash GB. Stromal cells differentially regulate neutrophil and lymphocyte recruitment through the endothelium. Immunology. 2010;131(3):357–70.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Rainger GE, Nash GB. Cellular pathology of atherosclerosis: smooth muscle cells prime cocultured endothelial cells for enhanced leukocyte adhesion. Circ Res. 2001;88(6):615–22.PubMedCrossRefGoogle Scholar
  137. 137.
    Filer A, Ward LSC, Kemble S, Davies CS, Munir H, Rogers R, et al. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann Rheum Dis. 2017;76(12):2105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    McGettrick HM, Butler LM, Buckley CD, Ed Rainger G, Nash GB. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J Leukoc Biol. 2012;91:385–400.Google Scholar
  139. 139.
    National Institutes of Health US. https://clinicaltrials.gov/
  140. 140.
    Weng JY, Du X, Geng SX, Peng YW, Wang Z, Lu ZS, et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant. 2010;45(12):1732–40.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006;81(10):1390–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86.PubMedCrossRefGoogle Scholar
  143. 143.
    Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41.PubMedCrossRefGoogle Scholar
  144. 144.
    von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2009;43(3):245–51.CrossRefGoogle Scholar
  145. 145.
    Arima N, Nakamura F, Fukunaga A, Hirata H, Machida H, Kouno S, et al. Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy. 2010;12:265–8.Google Scholar
  146. 146.
    Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW, et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014;20(2):229–35.PubMedCrossRefGoogle Scholar
  147. 147.
    Bernardo ME, Ball LM, Cometa AM, Roelofs H, Zecca M, Avanzini MA, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant. 2011;46(2):200–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J, et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia. 2008;22(3):593–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Forslow U, Blennow O, LeBlanc K, Ringden O, Gustafsson B, Mattsson J, et al. Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2012;89(3):220–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Fu Y, Yan Y, Qi Y, Yang L, Li T, Zhang N, et al. Impact of autologous mesenchymal stem cell infusion on neuromyelitis optica spectrum disorder: a pilot, 2-year observational study. CNS Neurosci Ther. 2016;22(8):677–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Munir H, McGettrick HM. Mesenchymal stem cells therapy for autoimmune disease: risks and rewards. Stem Cells Dev. 2015;24(18):2091–100.PubMedCrossRefGoogle Scholar
  152. 152.
    von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 2012;18:557–64.CrossRefGoogle Scholar
  153. 153.
    Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36(4):602–15.PubMedCrossRefGoogle Scholar
  155. 155.
    Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017;9(416):eaam7828.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hafsa Munir
    • 1
  • Lewis S. C. Ward
    • 2
  • Helen M. McGettrick
    • 3
  1. 1.MRC Cancer Unit/HutchisonUniversity of CambridgeCambridgeUK
  2. 2.Discovery Sciences, AstraZenecaCambridgeUK
  3. 3.Rheumatology Research Group, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK

Personalised recommendations