Advertisement

Molecular and Cellular Requirements for the Assembly of Tertiary Lymphoid Structures

  • C. G. Mueller
  • S. Nayar
  • J. Campos
  • F. Barone
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)

Abstract

At sites of chronic inflammation, recruited immune cells form structures that resemble secondary lymphoid organs (SLOs). Those are characterized by segregated areas of prevalent T- or B-cell aggregation, differentiation of high endothelial venules (HEVs) and local activation of resident stromal cells. B-cell proliferation and affinity maturation towards locally displayed autoantigens have been demonstrated at those sites, known as tertiary lymphoid structures (TLSs). TLS formation has been associated with local disease persistence and progression as well as increased systemic manifestations. While bearing a similar histological structure to SLO, the signals that regulate TLS and SLO formation can diverge, and a series of pro-inflammatory cytokines has been ascribed as responsible for TLS formation at different anatomical sites. Here we review the structural elements as well as the signals responsible for TLS aggregation, aiming to provide an overview to this complex immunological phenomenon.

Keywords

Tertiary lymphoid structures TNF  Lymphotoxin  RANKL Endothelial and stromal cells CXCL13 CCL21 Sjögren’s syndrome 

References

  1. 1.
    Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6:205–17.PubMedCrossRefGoogle Scholar
  2. 2.
    Link A, Hardie DL, Favre S, Britschgi MR, Adams DH, Sixt M, Cyster JG, Buckley CD, Luther SA. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am J Pathol. 2011;178:1662–75.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ, Valesini G, Pitzalis C. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren’s syndrome. Arthritis Rheum. 2005;52:1773–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Buckley CD, Barone F, Nayar S, Benezech C, Caamano J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol. 2015;33:715–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Golub R, Cumano A. Embryonic hematopoiesis. Blood Cells Mol Dis. 2013;51:226–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA, Fountain JJ, Martino C, Pearl JE, Tighe M, Lin YY, Slight S, Kolls JK, Reinhart TA, Randall TD, Cooper AM. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol. 2011;187:5402–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rangel-Moreno J, Carragher DM, De La Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol. 2011;12:639–46.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Barone F, Nayar S, Campos J, Cloake T, Withers DR, Toellner KM, Zhang Y, Fouser L, Fisher B, Bowman S, Rangel-Moreno J, Garcia-Hernandez Mde L, Randall TD, Lucchesi D, Bombardieri M, Pitzalis C, Luther SA, Buckley CD. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A. 2015;112:11024–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bombardieri M, Barone F, Humby F, Kelly S, Mcgurk M, Morgan P, Challacombe S, De Vita S, Valesini G, Spencer J, Pitzalis C. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjogren’s syndrome. J Immunol. 2007;179:4929–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Croia C, Astorri E, Murray-Brown W, Willis A, Brokstad KA, Sutcliffe N, Piper K, Jonsson R, Tappuni AR, Pitzalis C, Bombardieri M. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren’s syndrome. Arthritis Rheumatol. 2014;66:2545–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, Hamburger J, Ainsworth J, Mathews J, Salmon M, Bowman SJ, Buckley CD. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren’s syndrome. Arthritis Rheum. 2001;44:2633–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguccioni M, Buckley CD, Montecucco C, Pitzalis C. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol. 2007;171:1549–62.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol. 2007;178:7222–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10:927–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Neyt K, Perros F, Geurtsvankessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33:297–305.PubMedCrossRefGoogle Scholar
  16. 16.
    Astorri E, Bombardieri M, Gabba S, Peakman M, Pozzilli P, Pitzalis C. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J Immunol. 2010;185:3359–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Salomonsson S, Larsson P, Tengner P, Mellquist E, Hjelmstrom P, Wahren-Herlenius M. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren’s syndrome. Scand J Immunol. 2002;55:336–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Risselada AP, Looije MF, Kruize AA, Bijlsma JW, Van Roon JA. The role of ectopic germinal centers in the immunopathology of primary Sjogren’s syndrome: a systematic review. Semin Arthritis Rheum. 2013;42:368–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P, Wahren-Herlenius M, Jonsson R. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum. 2003;48:3187–201.PubMedCrossRefGoogle Scholar
  20. 20.
    Theander E, Vasaitis L, Baecklund E, Nordmark G, Warfvinge G, Liedholm R, Brokstad K, Jonsson R, Jonsson MV. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjogren’s syndrome. Ann Rheum Dis. 2011;70:1363–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bugatti S, Caporali R, Manzo A, Vitolo B, Pitzalis C, Montecucco C. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheum. 2005;52:3448–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Bugatti S, Manzo A, Benaglio F, Klersy C, Vitolo B, Todoerti M, Sakellariou G, Montecucco C, Caporali R. Serum levels of CXCL13 are associated with ultrasonographic synovitis and predict power Doppler persistence in early rheumatoid arthritis treated with non-biological disease-modifying anti-rheumatic drugs. Arthritis Res Ther. 2012;14:R34.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Barone F, Bombardieri M, Rosado MM, Morgan PR, Challacombe SJ, De Vita S, Carsetti R, Spencer J, Valesini G, Pitzalis C. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren’s syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol. 2008;180:5130–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol. 2012;3:416.PubMedGoogle Scholar
  25. 25.
    Hallas C, Greiner A, Peters K, Muller-Hermelink HK. Immunoglobulin VH genes of high-grade mucosa-associated lymphoid tissue lymphomas show a high load of somatic mutations and evidence of antigen-dependent affinity maturation. Lab Investig. 1998;78:277–87.PubMedGoogle Scholar
  26. 26.
    Qin Y, Greiner A, Hallas C, Haedicke W, Muller-Hermelink HK. Intraclonal offspring expansion of gastric low-grade MALT-type lymphoma: evidence for the role of antigen-driven high-affinity mutation in lymphomagenesis. Lab Investig. 1997;76:477–85.PubMedGoogle Scholar
  27. 27.
    Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, Grassia G, Macritchie N, Dever G, Gordon P, Burton FL, Ialenti A, Sabir SR, Mcinnes IB, Brewer JM, Garside P, Weber C, Lehmann T, Teupser D, Habenicht L, Beer M, Grabner R, Maffia P, Weih F, Habenicht AJ. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity. 2015;42:1100–15.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, Van Den Oord J, Stas M, Boon T, Coulie PG, Van Baren N. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 2012;72:3997–4007.PubMedCrossRefGoogle Scholar
  29. 29.
    Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, Van Der Wall M, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJ. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med. 2009;206:233–48.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148:11–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Katakai T, Hara T, Sugai M, Gonda H, Shimizu A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J Immunol. 2003;171:4359–68.PubMedCrossRefGoogle Scholar
  32. 32.
    Shomer NH, Fox JG, Juedes AE, Ruddle NH. Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect Immun. 2003;71:3572–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G, Fitzgerald O, Bresnihan B, Caporali R, Montecucco C, Uguccioni M, Pitzalis C. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol. 2005;35:1347–59.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Flavell RA, Kratz A, Ruddle NH. The contribution of insulitis to diabetes development in tumor necrosis factor transgenic mice. Curr Top Microbiol Immunol. 1996;206:33–50.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity. 2000;12:471–81.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibuque C, Sedgwick JD, Frenette PS, Lipp M, Furtado GC, Lira SA. A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J Immunol. 2004;173:4791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Bombardieri M, Barone F, Lucchesi D, Nayar S, Van Den Berg WB, Proctor G, Buckley CD, Pitzalis C. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J Immunol. 2012;189:3767–76.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Luther SA, Ansel KM, Cyster JG. Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med. 2003;197:1191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006;7:344–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Amft N, Bowman SJ. Chemokines and cell trafficking in Sjogren’s syndrome. Scand J Immunol. 2001;54:62–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Aust G, Sittig D, Becherer L, Anderegg U, Schutz A, Lamesch P, Schmucking E. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur J Endocrinol. 2004;150:225–34.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Carragher DM, Rangel-Moreno J, Randall TD. Ectopic lymphoid tissues and local immunity. Semin Immunol. 2008;20:26–42.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Weyand CM, Goronzy JJ. Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci. 2003;987:140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Okada T, Ngo VN, Ekland EH, Forster R, Lipp M, Littman DR, Cyster JG. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med. 2002;196:65–75.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matlsubian M, Cyster JG. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol. 2002;169:424–33.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen SC, Vassileva G, Kinsley D, Holzmann S, Manfra D, Wiekowski MT, Romani N, Lira SA. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J Immunol. 2002;168:1001–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Invest. 2006;116:2622–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH. Ectopic LT directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med. 2003;197:1153–63.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kratz A, Campos-Neto A, Hanson MS, Ruddle NH. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med. 1996;183:1461–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Matsumoto M, Lo SF, Carruthers CJ, Min J, Mariathasan S, Huang G, Plas DR, Martin SM, Geha RS, Nahm MH, Chaplin DD. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature. 1996;382:462–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Sacca R, Kratz A, Campos-Neto A, Hanson MS, Ruddle NH. Lymphotoxin: from chronic inflammation to lymphoid organs. J Inflamm. 1995;47:81–4.PubMedGoogle Scholar
  53. 53.
    Schrama D, Thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA, Becker JC. Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity. 2001;14:111–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Lotzer K, Dopping S, Connert S, Grabner R, Spanbroek R, Lemser B, Beer M, Hildner M, Hehlgans T, Van Der Wall M, Mebius RE, Lovas A, Randolph GJ, Weih F, Habenicht AJ. Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol. 2010;30:395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gommerman JL, Browning JL. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol. 2003;3:642–55.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX. Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity. 2006;25:499–509.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H. Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(−)CD4(+)CD45(+) cells. Immunity. 2002;17:31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Harmsen A, Kusser K, Hartson L, Tighe M, Sunshine MJ, Sedgwick JD, Choi Y, Littman DR, Randall TD. Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LT alpha) and retinoic acid receptor-related orphan receptor-gamma, but the organization of NALT is LT alpha dependent. J Immunol. 2002;168:986–90.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nagatake T, Fukuyama S, Kim DY, Goda K, Igarashi O, Sato S, Nochi T, Sagara H, Yokota Y, Jetten AM, Kaisho T, Akira S, Mimuro H, Sasakawa C, Fukui Y, Fujihashi K, Akiyama T, Inoue J, Penninger JM, Kunisawa J, Kiyono H. Id2-, RORgammat-, and LTbetaR-independent initiation of lymphoid organogenesis in ocular immunity. J Exp Med. 2009;206:2351–64.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hubner W, Chen BK, Genden E, Skobe M, Lira SA. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci U S A. 2007;104:5026–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kollias G. TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum. 2005;34:3–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Ernandez T, Mayadas TN. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 2009;76:262–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Jacob CO, Aiso S, Michie SA, McDevitt HO, Acha-Orbea H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci U S A. 1990;87:968–72.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol. 2004;5:141–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bugatti S, Manzo A, Bombardieri M, Vitolo B, Humby F, Kelly S, Montecucco C, Pitzalis C. Synovial tissue heterogeneity and peripheral blood biomarkers. Curr Rheumatol Rep. 2011;13:440–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, Spencer J, Pitzalis C. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009;6:e1.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’fallon WM, Goronzy JJ, Weyand CM. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167:1072–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Goya S, Matsuoka H, Mori M, Morishita H, Kida H, Kobashi Y, Kato T, Taguchi Y, Osaki T, Tachibana I, Nishimoto N, Yoshizaki K, Kawase I, Hayashi S. Sustained interleukin-6 signalling leads to the development of lymphoid organ-like structures in the lung. J Pathol. 2003;200:82–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee JJ, Mcgarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, Brenneise IE, Horton MA, Haczku A, Gelfand EW, Leikauf GD, Lee NA. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med. 1997;185:2143–56.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jones GW, Bombardieri M, Greenhill CJ, McLeod L, Nerviani A, Rocher-Ros V, Cardus A, Williams AS, Pitzalis C, Jenkins BJ, Jones SA. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J Exp Med. 2015;212:1793–802.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest. 2006;116:3183–94.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fleige H, Ravens S, Moschovakis GL, Bolter J, Willenzon S, Sutter G, Haussler S, Kalinke U, Prinz I, Forster R. IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. J Exp Med. 2014;211:643–51.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B, Wucherpfennig K, Turley S, Carroll MC, Sobel RA, Bettelli E, Kuchroo VK. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity. 2011;35:986–96.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ciccia F, Guggino G, Rizzo A, Ferrante A, Raimondo S, Giardina A, Dieli F, Campisi G, Alessandro R, Triolo G. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren’s syndrome. Ann Rheum Dis. 2012;71:295–301.PubMedCrossRefGoogle Scholar
  75. 75.
    Lavoie TN, Stewart CM, Berg KM, Li Y, Nguyen CQ. Expression of interleukin-22 in Sjogren’s syndrome: significant correlation with disease parameters. Scand J Immunol. 2011;74:377–82.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, Acha-Orbea H, Finke D. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity. 2007;26:643–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. CD4+CD3- cells induce Peyer’s patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity. 2002;17:363–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med. 2001;193:621–30.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol. 2003;3:292–303.PubMedCrossRefGoogle Scholar
  80. 80.
    Pitzalis C, Jones GW, Bombardieri M, Jones SA. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. 2014;14:447–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Kusser K, Randall TD. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci U S A. 2007;104:10577–82.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sato M, Hirayama S, Matsuda Y, Wagnetz D, Hwang DM, Guan Z, Liu M, Keshavjee S. Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation. 2011;91:1398–405.PubMedCrossRefGoogle Scholar
  83. 83.
    Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S. Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity. 2002;17:823–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Furtado GC, Pacer ME, Bongers G, Benezech C, He Z, Chen L, Berin MC, Kollias G, Caamano JH, Lira SA. TNFalpha-dependent development of lymphoid tissue in the absence of RORgammat(+) lymphoid tissue inducer cells. Mucosal Immunol. 2014;7:602–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature. 1998;391:799–803.PubMedCrossRefGoogle Scholar
  86. 86.
    Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity. 2005;23:539–50.PubMedCrossRefGoogle Scholar
  87. 87.
    Moussion C, Girard JP. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature. 2011;479:542–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Suematsu S, Watanabe T. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol. 2004;22:1539–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Geurtsvankessel CH, Willart MA, Bergen IM, Van Rijt LS, Muskens F, Elewaut D, Osterhaus AD, Hendriks R, Rimmelzwaan GF, Lambrecht BN. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med. 2009;206:2339–49.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. 2011;29:23–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell. 2012;150:194–206.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Peduto L, Dulauroy S, Lochner M, Spath GF, Morales MA, Cumano A, Eberl G. Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol. 2009;182:5789–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Dutertre CA, Clement M, Morvan M, Schakel K, Castier Y, Alsac JM, Michel JB, Nicoletti A. Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS One. 2014;9:e89983.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Drumea-Mirancea M, Wessels JT, Muller CA, Essl M, Eble JA, Tolosa E, Koch M, Reinhardt DP, Sixt M, Sorokin L, Stierhof YD, Schwarz H, Klein G. Characterization of a conduit system containing laminin-5 in the human thymus: a potential transport system for small molecules. J Cell Sci. 2006;119:1396–405.PubMedCrossRefGoogle Scholar
  95. 95.
    Doucet C, Brouty-Boye D, Pottin-Clemenceau C, Canonica GW, Jasmin C, Azzarone B. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest. 1998;101:2129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci U S A. 2014;111:14776–81.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nayar S, Campos J, Chung MM, Navarro-Nunez L, Chachlani M, Steinthal N, Gardner DH, Rankin P, Cloake T, Caamano JH, Mcgettrick HM, Watson SP, Luther S, Buckley CD, Barone F. Bimodal expansion of the lymphatic vessels is regulated by the sequential expression of IL-7 and lymphotoxin alpha1beta2 in newly formed tertiary lymphoid structures. J Immunol. 2016;197:1957–67.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Browning JL. Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev. 2008;223:202–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Marinkovic T. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Investig. 2006;116:2622–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Papandile A, Kelly JA, Mavragani CP, Gatumu M, Skarstein K, Browning JL. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjogren’s syndrome. Arthritis Res Ther. 2011;13:R182.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fava RA, Notidis E, Hunt J, Szanya V, Ratcliffe N, Ngam-Ek A, De Fougerolles AR, Sprague A, Browning JL. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol. 2003;171:115–26.PubMedCrossRefGoogle Scholar
  102. 102.
    Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad A. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjögren syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther. 2009;11:R24.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ruddle NH. Lymphotoxin and TNF: how it all began-a tribute to the travelers. Cytokine Growth Factor Rev. 2014;25:83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol. 2007;178:3822–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee BH, Carcamo WC, Chiorini JA, Peck AB, Nguyen CQ. Gene therapy using IL-27 ameliorates Sjogren’s syndrome-like autoimmune exocrinopathy. Arthritis Res Ther. 2012;14:R172.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bombardieri M, Lewis M, Pitzalis C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat Rev Rheumatol. 2017;13:141–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. G. Mueller
    • 1
  • S. Nayar
    • 2
  • J. Campos
    • 2
  • F. Barone
    • 2
  1. 1.CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et CellulaireUniversité de StrasbourgStrasbourgFrance
  2. 2.Rheumatology Research Group, Institute of Inflammation and Ageing (IIA)University of BirminghamBirminghamUK

Personalised recommendations