Advertisement

Evolution of the Human Impact on Oceans: Tipping Points of Socio-ecological Coviability

  • Catherine GoyetEmail author
  • Mohamed Anis Benallal
  • Amandine Bijoux
  • Véronique Guglielmi
  • Hadjer Moussa
  • Anne-Cécile Ribou
  • Franck Touratier
Chapter

Abstract

Since an important degree of the carbon dioxide (CO2) that mankind emits in the atmosphere ends up in the ocean as a result of gas exchange through the air-sea interface, the ocean acidifies itself (because of the reaction CO2 produces when it contacts water). Ocean acidification is one of the perturbing anthropogenic effects (because of human activity), not only for maritime ecosystems but also for Man himself as he will have to adapt. He will have to deal with variations in fisheries and other costal touristic activities (reduction of corals, and so on). However, the anthropogenic CO2 penetration in the ocean is not uniform, and the cold Polar Regions will be affected by the change faster than the warm tropical regions. The study that we are conducting addresses several points of the quantification, in time and space, of anthropogenic CO2 penetration in the ocean. One of them has permitted the identification of breaking points. We demonstrate that four tipping points can be located in order to quantify risks of ocean acidification, which may have as a result the dissolution of calcium carbonates that are indispensable to marine ecosystems (shells, corals, and so on).

Keywords

Anthropogenic carbon Ocean acidification Man’s impacts 

References

  1. Alvarez M, Lo Monaco C, Tanhua T, Yool A, Oschlies A, Bullister JL, Goyet C, Touratier F, Wanninkhof R, McDonagh E, Bryden HL (2009) Storage of anthropogenic carbon in the Indian Ocean: a comparison of five models. Biogeosciences 6:681–703CrossRefGoogle Scholar
  2. Benallal MA, Moussa H, Touratier F, Goyet C, Poisson A (2016) Ocean salinity from satellite-derived temperature in the Antarctic Ocean. Antarct Sci 28:127–134.  https://doi.org/10.1017/S0954102015000516 CrossRefGoogle Scholar
  3. Bijoux A, Ribou A-C (2014) Time-resolved microfluorimetry: an alternative method for free radical and metabolic rate detection in microalgae. Biotechnol J 9(2):294–300CrossRefGoogle Scholar
  4. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596CrossRefGoogle Scholar
  5. Brewer PG (1978) Direct observation of the oceanic CO2 increase. Geophys Res Lett 5:997–1000.  https://doi.org/10.1029/GL005i012p00997 CrossRefGoogle Scholar
  6. Chen CT, Millero FJ (1979) Gradual increase of oceanic carbon dioxide. Nature 277:205–206CrossRefGoogle Scholar
  7. Chen CTA (1993) The oceanic anthropogenic CO2 sink. Chemosphere 27:1041–1064CrossRefGoogle Scholar
  8. Coatanoan C, Goyet C, Gruber N, Sabine CL, Warner M (2001) Comparison of the two approaches to quantify anthropogenic CO2 in the ocean: results from the northern Indian Ocean. Global Biogeochemical Cycle 15(1):11–25CrossRefGoogle Scholar
  9. Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623CrossRefGoogle Scholar
  10. Dickson AG, Riley JP (1979) The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. I. The ionic product of water (Kw). Mar Chem 7:89–99CrossRefGoogle Scholar
  11. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743CrossRefGoogle Scholar
  12. DOE (1994) Handbook of methods for analysis of the various parameters of the carbon dioxide system in seawater; version 2, Dickson AG et Goyet C (eds), ORNL/CDIAC-74Google Scholar
  13. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  14. GAO (2014) Ocean acidification: federal response under way, but actions needed to understand and address potential impacts http://www.gao.gov/products/GAO-14-736 GAO-14-736: Published: Sep 12, 2014. Publicly Released: Oct 14, 2014
  15. Gerber M, Joos F, Vázquez-Rodríguez M, Touratier F, Goyet C (2009) Regional air-sea fluxes of anthropogenic carbon inferred with an Ensemble Kalman Filter. Global Biological Cycle 23:GB1013.  https://doi.org/10.1029/2008GB003247 CrossRefGoogle Scholar
  16. Geri P, El Yacoubi S, Goyet C (2014) Forecast by extrapolation of sea surface acidification in the northwestern Mediterranean Sea. J Comput Environ Sci, vol 2014, Article ID 201819, 7 p.  https://doi.org/10.1155/2014/201819
  17. GIEC (2001) Climate change 2001: the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881Google Scholar
  18. GIEC (2007) Bilan 2007 des changements climatiques. Contribution des Groupes de travail I, II et III au quatrième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Équipe de rédaction principale, Pachauri, R.K. et Reisinger, A. (publié sous la direction de~)]. GIEC, Genève, Suisse, …, 103 pagesGoogle Scholar
  19. GIEC (2013) Résumé à l’intention des décideurs, Changements climatiques 2013: Les éléments scientifiques. Contribution du Groupe de travail I au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [sous la direction de Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex et P.M. Midgley]. Cambridge University Press, Cambridge, Royaume-Uni et New York (État de New York), États-Unis d’AmériqueGoogle Scholar
  20. Goyet C, Brewer PG (1993) Biochemical properties of the oceanic carbon cycle. In: Willebrand J, Anderson DLT (eds) Modelling oceanic climate interactions. NATO ASI Series, I 11, Springer, Berlin/Heidelberg, pp 271–297Google Scholar
  21. Goyet C, Adams R, Eischeid G (1998) Observed increase of anthropogenic CO2 in the tropical Atlantic Ocean. Mar Chem 60:49–61CrossRefGoogle Scholar
  22. Goyet C, Coatanoan C, Eischeid G, Amaoka T, Okuda K, Tsunogai RH e S (1999) Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: a novel approach for the quantification of anthropogenic CO2 in seawater. J Mar Res 57:135–163CrossRefGoogle Scholar
  23. Goyet C, Ito Gonçalves R, Touratier F (2009) Anthropogenic carbon in the eastern tropical Pacific Ocean. Biogeosciences 6:149–156CrossRefGoogle Scholar
  24. Goyet C, Hassoun AER, Gemayel E, Touratier F, Abboud-Abi Saab M, Guglielmi V (2016) Thermodynamic forecasts of the mediterranean sea acidification. Mediterr Mar Sci 17(2):508–518CrossRefGoogle Scholar
  25. Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem Cycles 10:809–837CrossRefGoogle Scholar
  26. Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cycles 12:165–191CrossRefGoogle Scholar
  27. Laika H, Goyet C, Vouvé F, Poisson A, Touratier F (2009) Temporal properties of the CO2 system in the Southern Ocean south of Australia. Antarct Sci 21(6):663–680.  https://doi.org/10.1017/S0954102009990319 CrossRefGoogle Scholar
  28. Liu W, Au DWT, Anderson DM, Lam PKS, Wu RSS (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346:76–86CrossRefGoogle Scholar
  29. Lo Monaco C., C. Goyet, N. Metzl, A. Poisson and F. Touratier (2005) Distribution and inventory of anthropogenic CO2 in the Southern Ocean: comparison of three data-based methods. J Geophys Res, 110, C09S02,  https://doi.org/10.1029/2004JC002571
  30. Mackas DL (2011) Does blending of chlorophyll data bias temporal trend ? Nature 472:E4–E5CrossRefGoogle Scholar
  31. McDowell N, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang.  https://doi.org/10.1038/NCLIMATE2641
  32. McQuatters-Gollop A, Reid P, Edwards M, Burkill P, Castellani C, Batten S, Gieskes W, Beare D, Bidigare R, Head E, Johnson R, Kahru M, Joslow J, Pena A (2011) Is there a decline in marine phytoplankton ? Nature 472:E6–E7CrossRefGoogle Scholar
  33. Moussa H, Goyet C, Benallal MA, Lefevre N, Guglielmi V, El Jai M (2015) A comparison of neutral network and multiple linear regression technique for sea surface salinity estimation in the tropical Atlantic Ocean based on satellite data. ESAIM: Proc Surv 49:65–77CrossRefGoogle Scholar
  34. Moussa H, Benallal MA, Goyet C, Lefèvre N (2016) Satellite-derived CO 2 fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network. Int J Remote Sens 37(3):580–598.  https://doi.org/10.1080/01431161.2015.1131872 CrossRefGoogle Scholar
  35. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  36. Peng TH, Takahashi T, Broecker WS, Olafsson J (1987) Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and model. Tellus 39B:439–458CrossRefGoogle Scholar
  37. Rykaczewski RR, Dunne JP (2011) A measured look at ocean chlorophyll trends. Nature 472, nature09952, 2011Google Scholar
  38. Rapport des Nations Unies (2014) Pour un dévéloppement intelligent face au climat, 88908 v2Google Scholar
  39. Sabine CL, Key RM, Johnson KM, Millero FJ, Poisson A, Sarmiento JL, Wallace DWR, Winn CD (1999) Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem Cycles 13:179–198CrossRefGoogle Scholar
  40. Satoh M, Matsumoto Y (2008) Mercury-induced oxidative stress in marine phytoplankton Tetraselmis tetrathele (Prasinophyceae). Nat Sci Res Univ Tokushima 22:57–63Google Scholar
  41. Takahashi T, Williams RT, Bos DL (1982) Carbonate chemistry. In: Broecker WS, Spencer DW, Craig H (eds) GEOSECS Pacific expedition, Volume 3, Hydrographic data 1973–1974. National Science Foundation, Washington, DC, pp 77–83Google Scholar
  42. Tanhua T, Waugh DW, Wallace DWR (2008) Use of SF6 to estimate anthropogenic co2 in the upper ocean. J Geophys Res 113:C04037.  https://doi.org/10.1029/2007JC004416 CrossRefGoogle Scholar
  43. Thomas H et al (2001) An off‐line 3D model of anthropogenic CO2 uptake by the oceans. GRL 28(3):547–550CrossRefGoogle Scholar
  44. Touratier F, Goyet C (2004a) Definition, properties, and Atlantic Ocean distribution of the new tracer TrOCA. J Mar Syst 46:169–179CrossRefGoogle Scholar
  45. Touratier F, Goyet C (2004b) Applying the new TrOCA approach to estimate the distribution of anthropogenic CO2 in the Atlantic Ocean. J Mar Syst 46:181–197CrossRefGoogle Scholar
  46. Touratier F, Azouzi L, Goyet C (2007) CFC-11, Δ14C, and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus 59B:318–325CrossRefGoogle Scholar
  47. Vázquez-Rodríguez M, Touratier F, Lo Monaco C, Waugh DW, Padin XA, Bellerby RGJ, Goyet C, Metzl N, Ríos AF, Pérez FF (2009) Anthropogenic carbon distributions in the Atlantic Ocean: data-based estimates from the Arctic to the Antarctic. Biogeosciences 6:439–451CrossRefGoogle Scholar
  48. Waugh DW, Haine TWN, Hall TM (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Res I 51:1475–1491CrossRefGoogle Scholar
  49. Waugh DW, Hall TM, McNeil BI, Key R, Matear RJ (2006) Anthropogenic CO2 in the oceans estimated sing transit time distributions. Tellus 58B:376–389CrossRefGoogle Scholar
  50. Weiss RF (1974) Carbon dioxide in water’ and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  51. Williamson P, Turley C, Brownlee C, Findlay HS, Ridgwell A, Schmidt DN, Schroeder DC, Blackford J, Tyrell T, Pinnegar JK (2013) Impacts of ocean acidification. MCCIP Sci Rev 2013:34–48.  https://doi.org/10.14465/2013.arc05.034-048 CrossRefGoogle Scholar
  52. Zuppini A, Gerotto C, Baldan B (2010) Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol 51(6):884–895CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Catherine Goyet
    • 1
    Email author
  • Mohamed Anis Benallal
    • 1
  • Amandine Bijoux
    • 2
  • Véronique Guglielmi
    • 1
  • Hadjer Moussa
    • 1
  • Anne-Cécile Ribou
    • 1
  • Franck Touratier
    • 1
  1. 1.University of Perpignan - IMAGES, UMR ESPACE-DEVPerpignanFrance
  2. 2.OBS-BanyulsQuai RacoviztaBanyuls-sur-MerFrance

Personalised recommendations