Nondestructive Investigation of Paintings on Canvas by Infrared Thermography, Air-Coupled Ultrasound, and X-Ray Radiography

  • Hai ZhangEmail author
  • Stefano Sfarra
  • Ahmad Osman
  • Clemente Ibarra-Castanedo
  • Panagiotis Theodorakeas
  • Nicolas P. Avdelidis
  • Maria Koui
  • Domenica Paoletti
  • Xavier P. V. Maldague


In this paper, shortwave infrared (SWIR), mid-wave infrared (MWIR) thermography, air-coupled ultrasound (ACU), and X-ray radiography results were combined to retrieve the differences between a painting on the canvas sample constructed following the art master rules and an imitation far from it. Advanced image processing techniques including pulsed phase thermography (PPT), principal component thermography (PCT), and partial least square thermography (PLST) were applied to the MWIR images in order to highlight the shapes of subsurface features. Interestingly, additional defects were also discovered since the samples were handmade. Finally, a comprehensive and comparative study of these techniques was conducted to summarize their advantages and disadvantages.


Painting on canvas SWIR MWIR Air-coupled ultrasound X-ray radiography Nondestructive evaluation 


  1. 1.
    Shull PJ (2002) Nondestructive evaluation – theory, techniques, and applications. CRC Press: Taylor & Francis Inc, USGoogle Scholar
  2. 2.
    Sfarra S, Ibarra-Castanedo C, Ambrosini D, Paoletti D, Bendada A, Maldague X (2014) Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation. J Nondestruct Eval 33:358–383CrossRefGoogle Scholar
  3. 3.
    Tortora M, Sfarra S, Chiarini M, Daniele V, Taglieri G, Cerichelli G (2016) Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Appl Surf Sci 387:971–985CrossRefGoogle Scholar
  4. 4.
    Zhang H, Sfarra S, Saluja K, Peeters J, Fleuret J, Duan Y, Fernandes H, Avdelidis N, Ibarra-Castanedo C, Maldague X (2017) Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography. J Nondestruct Eval 36(2):34Google Scholar
  5. 5.
    Bendada A, Sfarra S, Ibarra-Castanedo C, Akhloufi M, Caumes J-P, Pradere C, Batsale J-C, Maldague X (2015) Subsurface imaging for panel paintings inspection: a comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra. Opto-Electron Rev 23(1):88–99CrossRefGoogle Scholar
  6. 6.
    Ibarra-Castanedo C, Khodayar F, Klein M, Sfarra S, Maldague X, Helal H, Tayoubi M, Marini B, Barré JC (2017) Infrared vision for artwork and cultural heritage NDE studies: principles and case studies. Insight 59(5):243–248CrossRefGoogle Scholar
  7. 7.
    Ibarra-Castanedo C, Maldague X (2013) Infrared thermography. In: Czichos H (ed) Handbook of technical diagnostics. Springer, Berlin, pp 175–220CrossRefGoogle Scholar
  8. 8.
    Imielinska K, Castaings M, Wojtyra R, Haras J, Le Clezio E, Hosten B (2004) Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites. J Mater Process Technol 157:513–522CrossRefGoogle Scholar
  9. 9.
    Impallaria A, Evangelisti F, Petrucci F, TIsato F, Castelli L, Taccetti F (2016) A new scanner for in situ digital radiography of paintings. Appl Phys Mater Sci Process 122(12):1043CrossRefGoogle Scholar
  10. 10.
    Duan Y, Huebner S, Hassler U, Osman A, Ibarra-Castanedo C, Maldague X (2013) Quantitative evaluation of optical lock-in and pulsed thermography for aluminum foam material. Infrared Phys Technol 60:275–280CrossRefGoogle Scholar
  11. 11.
    Maldague X, Marinetti S (1996) Pulse phase thermography. J Appl Phys 79(5):2694–2698Google Scholar
  12. 12.
    Rajic N (2002) Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos Struct 58(4):521–528CrossRefGoogle Scholar
  13. 13.
    Lopez F, Ibarra-Castanedo C, de Paulo Nicolau V, Maldague X (2014) Optimization of pulsed thermography inspection by partial least-squares regression. NDT&E Int 66:128–138CrossRefGoogle Scholar
  14. 14.
    Sfarra S, Ibarra-Castanedo C, Ridolfi S, Cerichelli G, Ambrosini D, Paoletti D, Maldague X (2014) Holographic interferometry (HI), infrared vision and x-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl Phys Mater Sci and Process 115(3):1041–1056CrossRefGoogle Scholar
  15. 15.
    Ibarra-Castanedo C, Sfarra S, Ambrosini D, Paoletti D, Bendada A, Maldague X (2010) Diagnostics of panel paintings using holographic interferometry and pulsed thermography. QIRT J 7(1):85–114CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hai Zhang
    • 1
    Email author
  • Stefano Sfarra
    • 2
  • Ahmad Osman
    • 3
  • Clemente Ibarra-Castanedo
    • 1
  • Panagiotis Theodorakeas
    • 4
  • Nicolas P. Avdelidis
    • 6
  • Maria Koui
    • 5
  • Domenica Paoletti
    • 2
  • Xavier P. V. Maldague
    • 1
  1. 1.Computer Vision and Systems Laboratory, Department of Electrical and Computer EngineeringLaval UniversityQuebecCanada
  2. 2.Dept. of Industrial and Information Engineering and Economics (DIIIE)University of L’AquilaMonteluco di Roio (AQ)Italy
  3. 3.Department Inspection of Components and Assemblies, Fraunhofer-Institute for Nondestructive Testing IZFPUniversity of Applied SciencesSaarbrückenGermany
  4. 4.National Technical University of Athens, Materials Science & Engineering Department, NDT-Lab, School of Chemical EngineeringAthensGreece
  5. 5.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  6. 6.Computer Vision & Systems Laboratory, Department of Electrical & Computer EngineeringLaval UniversityQuebec CityCanada

Personalised recommendations