Advertisement

The Study of Pentelic Marble in Pure Form and in Polluted Monuments by Fourier Transform Infrared Spectroscopy

  • Theophile Theophanides
  • Jane Anastassopoulou
  • Lorenzo Lazzarini
  • Vasiliki Dritsa
  • Panagiotis Papandreopoulos
  • Maria Koui
Chapter

Abstract

A genuine physicochemical method of Fourier transform infrared (FT-IR) spectroscopy has become a versatile research tool in the rehabilitation technologies of monuments. A spectroscopic technique in order to study the effects of aging, adverse weather, and pollution on the monuments is presented. Topical applications in the conservation of monuments and prime research in order to study the effects of aging are impressive illustrations of the high evolution of the technique. FT-IR spectroscopy has established itself as a powerful method for the rapid identification and differentiation of materials used by the artists or contractor-architects to describe and present the monuments as historic structures. It has become one of the best nondestructive techniques in the progress of basic research in sciences, in artwork, and in weather and natural effects on marbles for the various defects and the identification of pigments. At a molecular level, the method has advanced the vibrational problem of the chemical bonds of the molecules and the assignment of bond frequencies to chemical characteristic group frequencies, as vOH, vCO, vNH2, \( v{\mathrm{PO}}_2^{-} \), vO2-,vC-C, vC-S, and vS-S, stretching frequencies resulting from inorganic or organic colors as well as from proteins and DNA and the microorganisms on the surface of the monuments. The present work sets out to give a review of current examples on the analytical potential of FT-IR spectroscopy and its application on Pentelic marble.

Keywords

FT-IR Pentelic marble Restoration Conservation Pollution 

References

  1. 1.
    Anastassopoulou J, Koui M, Yfantis D et al (1997) The use of FT-IR spectroscopy for surface analysis of ancient marbles. In: Moropoulou A, Zezza F, Kollias E, Papachristodoulou (eds) Proceedings of the 4th international symposium on the conservation on monuments in the Mediterranean basin, vol 2. Technical Chamber of Greece, Athens, p 29Google Scholar
  2. 2.
    Theophanides T, Anastassopoulou J (2010) Monuments damage from environmental pollution of ancient marbles using spectroscopic technologies. In: Koui M, Zezza F, Koutsoukos P (eds) Book of abstracts of the 8th international symposium on the conservation of monuments in the Mediterranean Basin, monument damage hazards and rehabilitation technologies. NTUA, University of Patras, TEE, Athens, pp 118–119Google Scholar
  3. 3.
    Theophanides T, Anastassopoulou J (2012) Monuments damage from environmental pollution of ancient marbles using spectroscopic technologies. In: Koui M, Zezza F, Koutsoukos P (eds) Of the 8th international symposium on the conservation of monuments in the Mediterranean Basin, monument damage hazards and rehabilitation technologies, vol 2. Technical Chamber of Greece, Athens, pp 31–38Google Scholar
  4. 4.
    Theophanides T (2012) Infrared spectroscopy materials science, engineering and technology. Intech Publications, Croatia, Eurostar, free open accessCrossRefGoogle Scholar
  5. 5.
    Theophanides T (2012) Infrared spectroscopy life and biomedical sciences. Intech Publications, Croatia, Eurostar, free open accessGoogle Scholar
  6. 6.
    Theophanides T (2015) Infrared spectroscopy-Anharmonicity of biomolecules, crosslinking of biopolymers, food quality and medical pplications. InTech, free open access www.InTechOpen.com
  7. 7.
    Theophanides M, Anastassopoulou J (2009) Air pollution simulation and geographical information systems (GIS) applied to Athens International Airport. J Environ Sci Health A 44:758–766.  https://doi.org/10.1080/10934520902928354 CrossRefGoogle Scholar
  8. 8.
    Theophanides M, Anastassopoulou J, Theophanides T (2014) Geographical information systems and air pollution simulation for megalopolis’ electric power Plant in Peloponnese, Greece. J Environ Sci Health A 49:1045–1053.  https://doi.org/10.1080/10934529.2014.895557 CrossRefGoogle Scholar
  9. 9.
    Herschel W (1800) Experiments on the refrangibility of the invisible rays of the sun. Phil Trans R Soc London 90:284–292CrossRefGoogle Scholar
  10. 10.
    Elliot A, Ambrose E (1950) Structure of synthetic polypeptides. Nature 165:921–922CrossRefGoogle Scholar
  11. 11.
    Theophanides T (1978) Infrared and Raman spectra of biological molecules, NATO advanced study institute. D Reidel Publishing Co, Dordrecht, p 372Google Scholar
  12. 12.
    Anastassopoulou J, Boukaki E, Conti C et al (2009) Microimaging FT-IR spectroscopy on pathological breast tissues. Vib Spectrosc 51:270–275CrossRefGoogle Scholar
  13. 13.
    Hecht E (2002) Optics. Pearson Education Inc, San FranciscoGoogle Scholar
  14. 14.
    Michelson AA (1962) Studies in optics. University of Chicago, Press, Chicago, p 208Google Scholar
  15. 15.
    Gires F, Toumois P (1964) L’interféromètrieutilizable pour la compression lumineuse module en fréquence. Comptes Rendus del’Académie des Sciences de Paris 258:6112–6115Google Scholar
  16. 16.
    Tolansky S (1966) An introduction to interferometry. William Clowes and Sons Ltd, London, p 253Google Scholar
  17. 17.
    JBJ F, de Fourier O (1888) Idem Annals de Chimie et de Physique, 27, Paris. An Chem Phys 1824:236–281Google Scholar
  18. 18.
    Theophanides T, Sandorfy C (1984) Spectroscopy of biological molecules, NATO advanced study institute. D. Reidel Publishing Co, DordrechtGoogle Scholar
  19. 19.
    Theophanides T (1984) Fourier transform infrared spectroscopy. D Reidel Publishing Co, DordrechtCrossRefGoogle Scholar
  20. 20.
    Theophanides T (1989) Inorganic Bioactivators, infrared spectra, NATO advanced study institute. D Reidel Publishing Co, Dordrecht, p 415CrossRefGoogle Scholar
  21. 21.
    Mamarelis I, Pissaridi K, Dritsa V et al (2010) Oxidative stress and atherogenesis. An FT-IR spectroscopic study. In Vivo 24:883–888Google Scholar
  22. 22.
    Mortimer CE (1975) Chemistry a conceptual approach, 3rd edn. D Van Nostrand Co, New York/Cincinnati/Midbrain DallasGoogle Scholar
  23. 23.
    Hernanz A, Ruiz-López JF, Madariaga JM et al (2014) Spectroscopic characterization of crusts interstratified with prehistoric paintings preserved in open-air rock art shelters. J Raman Spectrosc 45:1236–1243.  https://doi.org/10.1002/jrs.4535 CrossRefGoogle Scholar
  24. 24.
    Maravelaki-Kalaitzaki P, Zafropoulos V, Fotakis C (1999) Excimer laser cleaning of encrustation on Pentelic marble: procedure and evaluation of the effects. Appl Surf Sci 148:92–104.  https://doi.org/10.1016/S0169-4332(99)00125-7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Theophile Theophanides
    • 1
  • Jane Anastassopoulou
    • 2
  • Lorenzo Lazzarini
    • 3
  • Vasiliki Dritsa
    • 4
  • Panagiotis Papandreopoulos
    • 1
  • Maria Koui
    • 5
  1. 1.National Technical University of Athens, Chemical Engineering SchoolRadiation Chemistry and BiospectroscopyAthensGreece
  2. 2.International Anticancer Research InstituteKapandritiGreece
  3. 3.I.U.A.V.- Dipartimento di Storia dell’Archittetura, L.A.M.ALaboratorio di Analisi dei Materiali Antichi, Pallazzo Badoer-S.PoloVeneziaItaly
  4. 4.Department of Materials Science and Engineering, NDT Lab, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  5. 5.School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations