Advertisement

The Effect of Fly Ash on the Corrosion Performance of AISI 316L Stainless Steel Reinforced Concrete for Application to Restoration Works of Ancient Monuments

  • Sofia Tsouli
  • Angeliki G. Lekatou
  • Spyridon Kleftakis
Chapter

Abstract

The accelerated corrosion performance of AISI type 316L stainless steel in solutions simulating concrete exposed to acid rain with the use of fly ash as corrosion inhibitor was studied by means of cyclic polarization. Fly ash was added to concrete simulating solutions at proportions of 0–25 wt%. Although 316L showed susceptibility to localized corrosion, the positive effect of fly ash on the cyclic potentiodynamic polarization behavior of 316L is clearly manifested. Fly ash content of 20 wt% in the electrolyte led to the highest corrosion resistance.

Keywords

Stainless steel Reinforced concrete Fly ash Acid rain DHS Reverse polarization 

References

  1. 1.
    Wood RJK, Walker JC, Harvey TJ et al (2013) Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel. Wear 306:254–262.  https://doi.org/10.1016/j.wear.2013.08.007 CrossRefGoogle Scholar
  2. 2.
    Ramana KVS, Anita T, Mandal S et al (2009) Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling. Mater Design 30(9):3770–3775.  https://doi.org/10.1016/j.matdes.2009.01.039
  3. 3.
    Ezuber HM (2014) Influence of temperature on the pitting corrosion behavior of AISI 316L in chloride-CO2 (sat.) solutions. Mater Design 59:339–343.  https://doi.org/10.1016/j.matdes.2014.02.045 CrossRefGoogle Scholar
  4. 4.
    Nagarajan S, Karthega M, Rajendran N (2007) Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy. J Appl Electrochem 37(2):195–201.  https://doi.org/10.1007/s10800-006-9231-y
  5. 5.
    Ningshen S, Kamachi Mudali U, Amarendra G et al (2006) Hydrogen effects on the passive film formation and pitting susceptibility of nitrogen containing type 316L stainless steels. Corros Sci 48(5):1106–1121.  https://doi.org/10.1016/j.corsci.2005.05.003 CrossRefGoogle Scholar
  6. 6.
    Biehler J, Hoche H, Oechsner M (2017) Corrosion properties of polished and shot-peened austenitic stainless steel 304L and 316L with and without plasma nitriding. Surf Coat Technol 313:40–46.  https://doi.org/10.1016/j.surfcoat.2017.01.050 CrossRefGoogle Scholar
  7. 7.
    Saidi D, Zaid B, Souami N et al (2015) AES depth profiles in Mo-coated 304L stainless steel achieved by RF-magnetron sputtering and influence of Mo on the corrosion in 3.5% NaCl solution. J Alloy Compd 645:45–50.  https://doi.org/10.1016/j.jallcom.2015.05.002 CrossRefGoogle Scholar
  8. 8.
    Blanco G, Bautista A, Takenouti H (2006) EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cement Concrete Comp 28(3):212–219.  https://doi.org/10.1016/j.cemconcomp.2006.01.012 CrossRefGoogle Scholar
  9. 9.
    Zacharopoulou A, Zacharopoulou E, Batis G (2014) Protection systems for reinforced concrete with corrosion inhibitors. Open J Met 4(4):86–92.  https://doi.org/10.4236/ojmetal.2014.44010
  10. 10.
    Apostolopoulos CA, Demis S, Papadakis VG (2013) Chloride-induced corrosion of steel reinforcement - Mechanical performance and pit depth analysis. Constr Build Mater 38:139–146.  https://doi.org/10.1016/j.conbuildmat.2012.07.087
  11. 11.
    Demis S, Pilakoutas K, Apostolopoulos CA (2010) Effect of corrosion on bond strength of steel and non-metallic reinforcement. Mater Corros 61(4):328–331.  https://doi.org/10.1002/maco.200905324 CrossRefGoogle Scholar
  12. 12.
    Apostolopoulos A, Matikas TE (2016) Corrosion of bare and embedded in concrete steel bar - impact on mechanical behavior. Int J Struct Integr 7(2):240–259.  https://doi.org/10.1108/IJSI-09-2014-0047 CrossRefGoogle Scholar
  13. 13.
    Sharifi-Asl S, Mao F, Lu P et al (2015) Exploration of the effect of chloride ion concentration and temperature on pitting corrosion of carbon steel in saturated Ca(OH)2 solution. Corros Sci 98:708–715.  https://doi.org/10.1016/j.corsci.2015.06.010
  14. 14.
    Batis G, Rakanta E (2005) Corrosion of steel reinforcement due to atmospheric pollution. Cement Concrete Comp 27(2):269–275.  https://doi.org/10.1016/j.cemconcomp.2004.02.038
  15. 15.
    Gerengi H, Bereket G, Kurtay M (2016) A morphological and electrochemical comparison of the corrosion process of aluminum alloys under simulated acid rain conditions. J Taiwan Inst Chem E 58:509–516.  https://doi.org/10.1016/j.jtice.2015.05.023
  16. 16.
    Gaddamwar AG (2011) Analytical study of rain water for the determination of polluted or unpolluted zone. Int J Environ Sci 1(6):1317–1322. https://www.researchgate.net/publication/267225698_Analytical_study_of_rain_water_for_the_determination_of_polluted_or_unpolluted_zone Google Scholar
  17. 17.
    Rosso F, Jin W, Pisello AL et al (2016) Translucent marbles for building envelope applications: Weathering effects on surface lightness and finishing when exposed to simulated acid rain. Constr Build Mater 108:146–153.  https://doi.org/10.1016/j.conbuildmat.2016.01.041
  18. 18.
    Camuffo D (2014) Atmospheric water and stone weathering. In: Camuffo D (ed) Microclimate for cultural heritage. Conservation, restoration, and maintenance of indoor and outdoor monuments, 2nd edn. Elsevier BV, USA, pp 203–243Google Scholar
  19. 19.
    Chousidis N, Rakanta E, Ioannou I et al (2015) Mechanical properties and durability performance of reinforced concrete containing fly ash. Constr Build Mater 101(1):810–817.  https://doi.org/10.1016/j.conbuildmat.2015.10.127 CrossRefGoogle Scholar
  20. 20.
    Zafeiropoulou T, Rakanta E, Batis G (2013) Carbonation resistance and anticorrosive properties of organic coatings for concrete structures. J Surf Engin Mater Adv Tech 3:67–74.  https://doi.org/10.4236/jsemat.2013.31A010 CrossRefGoogle Scholar
  21. 21.
    Ribeiro PHLC, Meira GR, Ferreira PRR et al (2013) Electrochemical realkalisation of carbonated concretes - Influence of material characteristics and thickness of concrete reinforcement cover. Constr Build Mater 40:280–290.  https://doi.org/10.1016/j.conbuildmat.2012.09.076
  22. 22.
    Nath P, Sarker P (2011) Effect of fly ash on the durability properties of high strength concrete. Procedia Eng 14:1149–1156.  https://doi.org/10.1016/j.proeng.2011.07.144 CrossRefGoogle Scholar
  23. 23.
    Boğa AR, Topçu IB (2012) Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Constr Build Mater 31:258–264.  https://doi.org/10.1016/j.conbuildmat.2011.12.106
  24. 24.
    Chousidis N, Rakanta E, Ioannou I et al (2015) Anticorrosive effect of electrochemical manganese dioxide by-products in reinforced concrete. J Mater Sci Chem Eng 3(5):9–20.  https://doi.org/10.4236/msce.2015.35002
  25. 25.
    Mehta PK, Monteiro PJM (eds) (2006) Concrete: Microstructure, properties, and materials, 3rd edn. New York, McGraw-HillGoogle Scholar
  26. 26.
    Uysal M, Akyuncu V (2012) Durability performance of concrete incorporating class F and class C fly ashes. Constr Build Mater 34:170–178.  https://doi.org/10.1016/j.conbuildmat.2012.02.075 CrossRefGoogle Scholar
  27. 27.
    Kouloumbi N, Batis G (1992) Chloride corrosion of steel rebars in mortars with fly ash admixtures. Cement Concrete Comp 14(3):199–207.  https://doi.org/10.1016/0958-9465(92)90014-M
  28. 28.
    Papadakis VG (2000) Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash. Cement Concrete Res 30(10):1647–1654.  https://doi.org/10.1016/S0008-8846(00)00388-4
  29. 29.
    Kitowski CJ, Wheat HG (1997) Effect of chlorides on reinforcing steel exposed to simulated concrete solutions. Corrosion 53(3):216–226.  https://doi.org/10.5006/1.3280463 CrossRefGoogle Scholar
  30. 30.
    El-Mahallawi IS, El Koussy MR, El Raghy SM et al (2007) Current research in Egypt on optimisation of combined mechanical strength and corrosion behaviour of steel rebar. Int Heat Treat Surf Eng 1(3):126–137.  https://doi.org/10.1179/174951507X235722
  31. 31.
    Brunoro G, Frignani A, Colledan A et al (2003) Organic films for protection of copper and bronze against acid rain corrosion. Corros Sci 45(10):2219–2231.  https://doi.org/10.1016/S0010-938X(03)00065-9
  32. 32.
    Ragab KA, Abdel-Karim R, Farag S et al (2010) Influence of SiC, SiO2 and graphite on corrosive wear of bronze composites subjected to acid rain. Tribol Int 43(3):594–601.  https://doi.org/10.1016/j.triboint.2009.09.008 CrossRefGoogle Scholar
  33. 33.
    Lekatou A, Karantzalis AE, Evangelou A et al (2015) Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. Mater Design 65:1121–1135.  https://doi.org/10.1016/j.matdes.2014.08.040
  34. 34.
    Battocchi D, Simões AM, Tallman DE et al (2006) Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer. Corros Sci 48(8):2226–2240.  https://doi.org/10.1016/j.corsci.2005.05.059
  35. 35.
    Tallman DE, Levine KL, Siripirom C et al (2008) Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3. Appl Surf Sci 254(17):5452–5459.  https://doi.org/10.1016/j.apsusc.2008.02.099 CrossRefGoogle Scholar
  36. 36.
    Stern M, Geary AL (1957) Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104(1):56–63.  https://doi.org/10.1149/1.2428496 CrossRefGoogle Scholar
  37. 37.
    Lekatou A, Sioulas D, Karantzalis AE et al (2015) A comparative study on the microstructure and surface property evaluation of coatings produced from nanostructured and conventional WC-Co powders HVOF-sprayed on Al 7075. Surf Coat Technol 276:539–556.  https://doi.org/10.1016/j.surfcoat.2015.06.017
  38. 38.
    Silverman DC (2011) Practical corrosion prediction using electrochemical techniques. In: Revie RW (ed) Uhlig’s corrosion handbook, 3rd edn. Wiley, New York, pp 1129–1166CrossRefGoogle Scholar
  39. 39.
    Chousidis N, Ioannou I, Rakanta E et al (2016) Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes. Constr Build Mater 126:86–97.  https://doi.org/10.1016/j.conbuildmat.2016.09.024 CrossRefGoogle Scholar
  40. 40.
    Kouloumbi N, Batis G, Malami C (1994) The anticorrosive effect of fly ash, slag and a Greek pozzolan in reinforced concrete. Cement Concrete Comp 16(4):253–260.  https://doi.org/10.1016/0958-9465(94)90037-X CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sofia Tsouli
    • 1
  • Angeliki G. Lekatou
    • 1
  • Spyridon Kleftakis
    • 1
  1. 1.Laboratory of Applied Metallurgy, Department of Materials Science and Engineering, School of EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations