Advertisement

Vegetables

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

Vegetables are crucial part of the Mediterranean diet, which is principally founded on plant-based foods with occasional inclusion of land or sea animals. In addition to whole grains, legumes and pulses, fresh fruit, cheese, and olive oil, the Mediterranean diet places a major emphasis on vegetables, which are included abundantly in the daily eating plan.

References

  1. 1.
    Dentali F, Crowther M, Galli M, Pomero F, Garcia D, Clark N, Spadafora L, Witt DM, Ageno W, WARPEDI Investigators. Effect of vitamin K intake on the stability of treatment with vitamin K antagonists: a systematic review of the literature. Semin Thromb Hemost. 2016;42:671–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayes JD, Kelleher MO, Eggleston IM. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr. 2008;47:73–88.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A. 1994;91:3147–50.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tsimberidou AM, Keating MJ. Treatment of fludarabine-refractory chronic lymphocytic leukemia. Cancer. 2009;115:2824–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang X, Di Pasqua AJ, Govind S, McCracken E, Hong C, Mi L, Mao Y, Wu JY, Tomita Y, Woodrick JC, Fine RL, Chung FL. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure-activity relationships. J Med Chem. 2011;54:809–16.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014;66:128–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Wong BB, Koh S, Hegney DG, He HG. The effectiveness of cabbage leaf application (treatment) on pain and hardness in breast engorgement and its effect on the duration of breastfeeding. The. JBI Database System Rev Implement Rep. 2012;10:1185–213.CrossRefGoogle Scholar
  8. 8.
    Bryan NS. Food, nutrition, and the nitric oxide pathway: biochemistry and bioactivity. Lancaster, PA: DEStech Publications, Inc.; 2010.Google Scholar
  9. 9.
    Noonan SC, Savage GP. Oxalate content of foods and its effect on humans (PDF). Asia Pac J Clin Nutr. 1999;8:64–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Weaver CM, Heaney RP. Calcium in human health. New York: Human Press Inc.; 2006. p. 135. ISBN 1-59259-452.8.CrossRefGoogle Scholar
  11. 11.
    Sutton M. Spinach Iron and Popeye. Ironic lessons from biochemistry and history on the importance of healthy eating, healthy scepticism and adequate citation. Int J Criminol. 2010. http://www.internetjournalofcriminology.com/Sutton_Spinach_Iron_and_Popeye_March_2010.pdf.
  12. 12.
    Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532_538.CrossRefGoogle Scholar
  13. 13.
    Stahl W, Sies H. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from utomato juice in humans. J Nutr. 1992;122:2161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Arab L, Steck S. Lycopene and cardiovascular disease. Am J Clin Nutr. 2000;71(suppl):1691S–5S.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Goulinet S, Chapman MJ. Plasma LDL and HDL subspecies are heterogenous in particle content of tocopherols and oxygenated and hydrocarbon carotenoids. Relevance to oxidative resistance and atherogenesis. Arterioscler Thromb Vasc Biol. 1997;17:786–96.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hininger I, Chopra M, Thurnham DI, et al. Effect of increased fruit and vegetable intake on the susceptibility of lipoprotein to oxidation in smokers. Eur J Clin Nutr. 1997;51:601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Steinberg FM, Chait A. Antioxidant vitamin supplementation and lipid peroxidation in smokers. Am J Clin Nutr. 1998;68:319–27.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Romanchik JE, Harrison EH, Morel DW. Addition of lutein, lycopene or beta-carotene to LDL or serum in vitro: effects on carotenoid distribution, LDL composition, and LDL oxidation. J Nutr Biochem. 1997;8:681–8.CrossRefGoogle Scholar
  19. 19.
    Dugas TR, Morel DW, Harrison EH. Impact of LDL carotenoids and alpha-tocopherol content on LDL oxidation by endothelial cells in culture. J Lipid Res. 1998;39:999–1007.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Francis JM. Iberia and the Americas. Santa Barbara, CA: ABC-CLIO; 2005. ISBN 1-85109-426-1.Google Scholar
  21. 21.
    Tudela JA, Cantos E, Espín JC, Tomás-Barberán FA, Gil MI. Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking. J Agric Food Chem. 2002;50:5925–31.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–50.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vincent-Baudry S, Defoort C, Gerber M, Bernard MC, Verger P, Helal O, et al. The Medi-RIVAGE study: reduction of cardiovascular disease risk factors after a 3-mo intervention with a Mediterranean-type diet or a low-fat diet. Am J Clin Nutr. 2005;82:964–71.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Estruch R, Martínez-González MA, Corella D, Salas-Salvadò J, Ruiz-Gutiérrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors:a randomized trial. Ann Intern Med. 2006;145:1–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Fitó M, Guxens M, Corella D, Sàez G, Estruch R, de la Torre R, et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med. 2007;167:1195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mena MP, Sacanella E, Vázquez-Agell M, Morales M, Fitò M, Escoda R, et al. Inhibition of circulating immune cell activation: a molecular anti-inflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fuentes F, López-Miranda J, Sánchez E, Sàncez F, Paez J, Paz-Rojas E, et al. Mediterranean and low-fat diets improve endothelial function in hypercholesterolemic men. Ann Intern Med. 2001;134:1115–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Susin J, Kmecl V, Gregorcic A. A survey of nitrate and nitrite content of fruit and vegetables grown in Slovenia during 1996–2002. Food Addit Contam. 2006;23:385–90.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Santamaria P. Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric. 2006;86:10–7.CrossRefGoogle Scholar
  32. 32.
    Pennington JAT. Dietary exposure models for nitrates and nitrites. Food Control. 1998;9:385–95.CrossRefGoogle Scholar
  33. 33.
    Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2007;104:19144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Webb AJ, Patel N, Loukogeorgakis S, et al. Acute blood pressure lowering, vasoprotective, and anti-platelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jansson EA, Huang L, Malkey R, et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol. 2008;4:411–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355:2792–3.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kapil V, Milsom AB, Okorie M, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56:274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Carlstrom M, Larsen FJ, Nystrom T, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A. 2010;107:17716–20.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Dejam A, Hunter CJ, Schechter AN, Gladwin MT. Emerging role of nitrite in human biology. Blood Cells Mol Dis. 2004;32:423–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Lundberg JO, Weitzberg E. NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol. 2005;25:915–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, McKenzie H. Stomach NO synthesis. Nature. 1994;368:502.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lundberg JO, Govoni M. Inorganic nitrate is a possible source forsystemic generation of nitric oxide. Free Radic Biol Med. 2004;37:395–400.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Moncada S. Nitric oxide: discovery and impact on clinical medicine. J R Soc Med. 1999;92:164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med. 2010;49:307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vasc Pharmacol. 2008;49:134–40.CrossRefGoogle Scholar
  48. 48.
    Kapil V, Webb AJ, Ahluwalia A. Inorganic nitrate and the cardiovascular system. Heart. 2010;96:1703–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bryan NS. Cardioprotective actions of nitrite therapy and dietary considerations. Front Biosci. 2009;14:4793–808.CrossRefGoogle Scholar
  50. 50.
    Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.PubMedGoogle Scholar
  51. 51.
    Radomski MW, Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost. 1993;70:36–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Asp Med. 2005;26:33–65.CrossRefGoogle Scholar
  53. 53.
    Llorens S, Jordán J, Nava E. The nitric oxide pathway in the cardiovascular system. J Physiol Biochem. 2002;58:179–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Hadi HAR, Carr CS, Endothelial Dysfunction SJA. Cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1:183–98.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hirata Y, Nagata D, Suzuki E, Nishimatsu H, Suzuki J, Nagai R. Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. Int Heart J. 2010;51:1–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Rouse IL, Beilin LJ, Armstrong BK, Vandoingen R. Blood pressure-lowering effects of a vegetarian diet: controlled trial in normotensive subjects. Lancet. 1983;1:5–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.PubMedCrossRefGoogle Scholar
  60. 60.
    Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric. 2000;80:967–84.CrossRefGoogle Scholar
  62. 62.
    Talalay P, Fahey JW. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr. 2001;131(Suppl. 11):3027S–33S.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Traka M, Mithen RF. Glucosinolates, isothiocyanates and human health. Phytochem Rev. 2009;8:269–82.CrossRefGoogle Scholar
  64. 64.
    Manchali S, Murthy KNC, Patil BS. Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods. 2012;4:94–106.CrossRefGoogle Scholar
  65. 65.
    Graham S, Dayal H, Swanson M, Mittelman A, Wilkinson G. Diet in the epidemiology of cancer of the colon and rectum. J Natl Cancer Inst. 1978;61:709–14.PubMedGoogle Scholar
  66. 66.
    Gupta P, Kim B, Kim SH, Srivastava SK. Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res. 2014;58:1685–707.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kirsh VA, Peters U, Mayne ST, Subar AF, Chatterjee N, Johnson CC, Hayes RB. Prostate, lung, colorectal and ovarian cancer screening trial. Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst. 2007;99:1200–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007;64:1105–27.PubMedCrossRefGoogle Scholar
  69. 69.
    Fuentes F, Paredes-Gonzalez X, Kong AT. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,31-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep. 2015;1:179–96.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dworkin AM, Huang TH, Toland AE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol. 2009;19:165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Basse C, Arock M. The increasing roles of epigenetics in breast cancer: implications for pathogenicity, biomarkers, prevention and treatment. Int J Cancer. 2015;137:2785–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Nowsheen S, Aziz K, Tran PT, Gorgoulis VG, Yang ES, Georgakilas AG. Epigenetic inactivation of DNA repair in breast cancer. Cancer Lett. 2014;342:213–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, et al. Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol. 2015;35:S5–S24.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wong CP, Hsu A, Buchanan A, Palomera-Sanchez Z, Beaver LM, Houseman EA, Williams DE, Dashwood RH, Ho E. Effects of sulforaphane and 3,31-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One. 2014;9:e86787.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12:647–56.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Morey Kinney SR, Smiraglia DJ, James SR, Moser MT, Foster BA, Karpf AR. Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res. 2008;6:1365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, Lu YY, Tang YA, Yang YC, Yang PC, et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010;70:5807–17.PubMedCrossRefGoogle Scholar
  80. 80.
    Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97:1172–9.PubMedCrossRefGoogle Scholar
  81. 81.
    He S, Wang F, Yang L, Guo C, Wan R, Ke A, Xu L, Hu G, Xu X, Shen J, et al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One. 2011;6:e27684.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, Kitano S, Hirohashi S. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sproul D, Gilbert N, Bickmore WA. The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet. 2005;6:775–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304.PubMedCrossRefGoogle Scholar
  86. 86.
    Turner BM. Histone acetylation and an epigenetic code. BioEssays. 2000;22:836–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Royston KJ, Tollefsbol TO. The epigenetic impact of cruciferous vegetables on cancer prevention. Curr Pharmacol Rep. 2015;1:46–51.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One. 2012;7:e37748.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gerhauser C. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Curr Opin Clin Nutr Metab Care. 2013;16:405–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis. 2012;33:1833–42.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Forster T, Rausch V, Zhang Y, Isayev O, Heilmann K, Schoensiegel F, Liu L, Nessling M, Richter K, Labsch S, et al. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget. 2014;5:1621–34.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Löhr CV, Ho E, Williams DE, Dashwood RH. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics. 2013;8:612–23.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Balasubramanian S, Chew YC, Eckert RL. Sulforaphane suppresses polycomb group protein level via a proteasome-dependent mechanism in skin cancer cells. Mol Pharmacol. 2011;80:870–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chew YC, Adhikary G, Wilson GM, Xu W, Eckert RL. Sulforaphane induction of p21(Cip1) cyclin-dependent kinase inhibitor expression requires p53 and Sp1 transcription factors and is p53-dependent. J Biol Chem. 2012;287:16168–78.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, Conney AH, Lu YP, Kong AN. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res. 2014;7:319–29.CrossRefGoogle Scholar
  96. 96.
    Wang LG, Chiao JW. Prostate cancer chemopreventive activity of phenethyl isothiocyanate through epigenetic regulation (review). Int J Oncol. 2010;37:533–9.PubMedGoogle Scholar
  97. 97.
    Traka MH, Melchini A, Mithen RF. Sulforaphane and prostate cancer interception. Drug Discov Today. 2014;19:1488–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics. 2011;3:3.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5:e11457.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis. 2006;27:811–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gibbs A, Schwartzman J, Deng V, Alumkal J. Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A. 2009;106:16663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev. 1996;5:733–48.Google Scholar
  103. 103.
    Willett W. Nutritional epidemiology. 2nd ed. New York: Oxford University Press; 1998.CrossRefGoogle Scholar
  104. 104.
    Voorrips LE, Goldbohm RA, Verhoeven DT, et al. Vegetable and fruit consumption and lung cancer risk in the Netherlands cohort study on diet and cancer. Cancer Causes Control. 2000;11:101–15.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Feskanich D, Ziegler RG, Michaud DS, et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst. 2000;92:1812–23.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Neuhouser ML, Patterson RE, Thornquist MD, Omenn GS, King IB, Goodman GE. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET). Cancer Epidemiol Biomark Prev. 2003;12:350–8.Google Scholar
  107. 107.
    Miller AB, Altenburg HP, Bueno-de-Mesquita B, et al. Fruits and vegetables and lung cancer: findings from the European prospective investigation into cancer and nutrition. Int J Cancer. 2004;108:269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Benito E, Obrador A, Stiggelbout A, et al. A population-based case-control study of colorectal cancer in Majorca. I. Dietary factors. Int J Cancer. 1990;45:69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    West DW, Slattery ML, Robison LM, et al. Dietary intake and colon cancer: sex- and anatomic site-specific associations. Am J Epidemiol. 1989;130:883–94.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Young TB, Wolf DA. Case-control study of proximal and distal colon cancer and diet in Wisconsin. Int J Cancer. 1988;42:167–75.PubMedCrossRefGoogle Scholar
  111. 111.
    Kojima M, Wakai K, Tamakoshi K, et al. Diet and colorectal cancer mortality: results from the Japan Collaborative Cohort Study. Nutr Cancer. 2004;50(1):23–32.PubMedCrossRefGoogle Scholar
  112. 112.
    McCullough ML, Robertson AS, Chao A, et al. A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Causes Control. 2003;14:959–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Michels KB, Edward G, Joshipura KJ, et al. Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers. J Natl Cancer Inst. 2000;92:1740–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol. 1994;139:1–15.PubMedCrossRefGoogle Scholar
  115. 115.
    Hsing AW, McLaughlin JK, Chow WH, et al. Risk factors for colorectal cancer in a prospective study among US white men. Int J Cancer. 1998;77:549–53.PubMedCrossRefGoogle Scholar
  116. 116.
    Pietinen P, Malila N, Virtanen M, et al. Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control. 1999;10:387–96.PubMedCrossRefGoogle Scholar
  117. 117.
    Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJ, van den Brandt PA. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands cohort study on diet and cancer. Am J Epidemiol. 2000;152:1081–92.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    van Gils CH, Peeters PH, Bueno-de-Mesquita HB, et al. Consumption of vegetables and fruits and risk of breast cancer. JAMA. 2005;293:183–93.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomark Prev. 2003;12(12):1403–9.Google Scholar
  120. 120.
    Kristal AR, Stanford JL. Cruciferous vegetables and prostate cancer risk: confounding by PSA screening. Cancer Epidemiol Biomark Prev. 2004;13:1265.Google Scholar
  121. 121.
    Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors. 2003;17:115–30.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Seow A, Shi CY, Chung FL, et al. Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemiol Biomark Prev. 1998;7:775–81.Google Scholar
  123. 123.
    Lewis S, Brennan P, Nyberg F, et al. Re: Spitz, M. R., Duphorne, C. M., Detry, M. A., Pillow, P. C., Amos, C. I., Lei, L., de Andrade, M., Gu, X., Hong, W. K., and Wu, X. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Biomark Prev. 2000;9:1017–20.Google Scholar
  124. 124.
    London SJ, Yuan JM, Chung FL, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet. 2000;356:724–9.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Zhao B, Seow A, Lee EJ, et al. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomark Prev. 2001;10:1063–7.Google Scholar
  126. 126.
    Turner F, Smith G, Sachse C, et al. Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer. Int J Cancer. 2004;112:259–64.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Seow A, Yuan JM, Sun CL, Van Den Berg D, Lee HP, Yu MC. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis. 2002;23:2055–61.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Slattery ML, Kampman E, Samowitz W, Caan BJ, Potter JD. Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer. Int J Cancer. 2000;87:728–33.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Baena Ruiz R, Salinas Hernández P. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas. 2016;94:13–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Eliassen AH, Hendrickson SJ, Brinton LA, Buring BJ, Campos H, et al. Circulating carotenoids and rosk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst. 2012;104:1905–16.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst. 1995;87:1767–76.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Tzonou A, Signorello LB, Lagiou P, Wuu J, Trichopoulos D, Trichopoulou A. Diet and cancer of the prostate: a case-control study in Greece. Int J Cancer. 1999;80:149–55.CrossRefGoogle Scholar
  133. 133.
    Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle and prostate cancer in Adventist men. Cancer. 1989;64:598–604.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Norrish AE, Jackson RT, Sharpe SJ, Murray Skeaff C. Prostate cancer and dietary carotenoids. Am J Epidemiol. 2000;151:119–23.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Key T, et al. A case – control study of diet and prostate cancer. Br J Cancer. 1997;76:678–87.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Schuman L, Mandel J, Radke A. Some selected features of the epidemiology of prostate cancer: Minneapolis-St Paul, Minnesota case–control study, 1976–1979. In: Magnus K, editor. Trends in cancer incidence: causes and implications. Washington, DC: Hemisphere Publishing Corporation; 1982. p. 345–54.Google Scholar
  137. 137.
    Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA. Vegetable and fruit consumption and prostate cancer risk: a cohort study in the Netherlands. Cancer Epidemiol Biomark Prev. 1998;7:673–80.Google Scholar
  138. 138.
    Kucuk O, Sarkar FH, Sakr W, Djuric Z, Pollak MN, Khachik F, Li YW, Banerjee M, Grignon D, Bertram JS, Crissman JD, Pontes EJ, Wood DP Jr. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomark Prev. 2001;10:861–8.Google Scholar
  139. 139.
    DGE (Deutsche Gesellschaft für Ernahrung e. V.; ed.). Obst und Gemüse in der Pravention chronischer Krankheiten. Bonn: Angela Bechthold; 2007.Google Scholar
  140. 140.
    von Ruesten A, Steffen A, Floegel A, et al. Trend in obesity in European adult cohort populations during follow-up since 1996 and their predictions to 2015. PLoS One. 2011;6:e27455.CrossRefGoogle Scholar
  141. 141.
    Helmert U, Strube H. Trends in the development and prevalence of obesity in Germany between 1985 and 2002. Gesundheitswesen. 2004;66:409–15.PubMedCrossRefGoogle Scholar
  142. 142.
    Hall JN, Moore S, Harper SB, Lynch JW. Global variability in fruit and vegetable consumption. Am J Prev Med. 2009;36:402–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Ledikwe JH, Blanck HM, Kettel Khan L, et al. Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr. 2006;84:1362–8.CrossRefGoogle Scholar
  144. 144.
    Rolls BJ, Ello-Martin JA, Tohill BC. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev. 2004;62:1–17.PubMedCrossRefGoogle Scholar
  145. 145.
    Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51:637–63.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Thefeld W, Prävalenz d. diabetes mellitus in der erwachsenen Bevölkerung Deutschlands. Gesundheitswesen. 1999;61:S85–9.PubMedGoogle Scholar
  147. 147.
    Schulze MB, Hu FB. Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health. 2005;26:445–67.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Hamer M, Chida Y. Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertens. 2007;25:2361–9.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Carter P, Gray LJ, Troughton J, et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. Br Med J. 2010;341:c4229.CrossRefGoogle Scholar
  150. 150.
    Harding AH, Wareham NJ, Bingham SA, et al. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer—Norfolk prospective study. Arch Intern Med. 2008;168:1493–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a metaanalysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Weikert S, Boeing H, Pischon T, et al. Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition. Am J Epidemiol. 2008;167:438–46.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Cook NR, Cohen J, Heber PR, et al. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med. 1995;155:701–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Staessen JA, Li Y, Thijs L, Wang JG. Blood pressure reduction and cardiovascular prevention: an update including the 2003–2004 secondary prevention trials. Hypertens Res. 2005;28:385–407.PubMedCrossRefGoogle Scholar
  155. 155.
    Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.PubMedCrossRefGoogle Scholar
  156. 156.
    Mancia G, De Backer G, Dominiczak A, et al. 2007 ESH–ESC practice guidelines for the management of arterial hypertension: ESH–ESC task force on the management of arterial hypertension. J Hypertens. 2007;25:1751–62.PubMedCrossRefGoogle Scholar
  157. 157.
    Berkow SE, Barnard ND. Blood pressure regulation and vegetarian diets. Nutr Rev. 2005;63:1–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Ascherio A, Hennekens C, Willett WC, et al. Prospective study of nutritional factors, blood pressure, and hypertension among US women. Hypertension. 1996;27:1065–72.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Miura K, Greenland P, Stamler J, et al. Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: the Chicago Western Electric Study. Am J Epidemiol. 2004;159:572–80.PubMedCrossRefGoogle Scholar
  160. 160.
    Steffen LM, Kroenke CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2005;82:1169–77.PubMedCrossRefGoogle Scholar
  161. 161.
    Schulze MB, Hoffmann K, Kroke A, Boeing H. Risk of hypertension among women in the EPIC-Potsdam Study: comparison of relative risk estimates for exploratory and hypothesis-oriented dietary patterns. Am J Epidemiol. 2003;158:365–73.PubMedCrossRefGoogle Scholar
  162. 162.
    Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and blood pressure change over 5-y follow-up in the SU.VI.MAX cohort. Am J Clin Nutr. 2007;85:1650–6.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Cassidy A, O’Reilly EJ, Kay C, et al. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 2011;93:338–47.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    John JH, Ziebland S, Yudkin P, et al. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet. 2002;359:1969–74.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    WHO (World Health Organization). The global burden of disease: 2004 update. Geneva: WHO; 2008.Google Scholar
  166. 166.
    Graham I, Atar D, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Fourth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil. 2007;14(Suppl 2):E1–E40.PubMedCrossRefGoogle Scholar
  167. 167.
    Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136:2588–93.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    He FJ, Nowson CA, Lucas M, Macgregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens. 2007;21:717–28.PubMedCrossRefGoogle Scholar
  169. 169.
    Crowe FL, Roddam AW, Key TJ, et al. European prospective investigation into cancer and nutrition (EPIC)-heart study collaborators. Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart Study. Eur Heart J. 2011;32:1235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Oude Griep LM, Geleijnse JM, Kromhout D, et al. Raw and processed fruit and vegetable consumption and 10-year coronary heart disease incidence in a population-based cohort study in The Netherlands. PLoS One. 2010;5:e13609.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Bendinelli B, Masala G, Saieva C, et al. Fruit, vegetables, and olive oil and risk of coronary heart disease in Italian women: the EPICOR Study. Am J Clin Nutr. 2011;93:275–83.CrossRefPubMedGoogle Scholar
  172. 172.
    Bazzano LA. Dietary intake of fruits and vegetables and risk of diabetes mellitus and cardiovascular disease. Geneva: World Health Organization; 2005.Google Scholar
  173. 173.
    American Heart Association Primary prevention of cardiovascular disease in adults, 2011. www.americanheart.org/presenter.jhtml?identifier=4704. Accessed 9 Mar 2011.
  174. 174.
    McCall DO, McGartland CP, McKinley MC, et al. Dietary intake of fruits and vegetables improves microvascular function in hypertensive subjects in a dose-dependent manner. Circulation. 2009;119:2153–60.PubMedCrossRefGoogle Scholar
  175. 175.
    Hubbard GP, Wolffram S, de Vos R, et al. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br J Nutr. 2006;96:482–8.PubMedGoogle Scholar
  176. 176.
    O’Kennedy N, Crosbie L, Whelan S, et al. Effects of tomato extract on platelet function: a double-blinded crossover study in healthy humans. Am J Clin Nutr. 2006;84:561–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Erlund I, Koli R, Alfthan G, et al. Favourable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr. 2007;87:323–31.CrossRefGoogle Scholar
  178. 178.
    Watzl B, Kulling SE, Möseneder J, et al. A 4-week intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, non-smoking men. Am J Clin Nutr. 2005;82:1052–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Kelley DS, Rasooly R, Jacob RA, et al. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr. 2006;136:981–6.PubMedCrossRefGoogle Scholar
  180. 180.
    Goldstein LB, Bushnell CD, Adams RJ, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:517–84.PubMedCrossRefGoogle Scholar
  181. 181.
    Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable consumption and risk of stroke: a metaanalysis of cohort studies. Neurology. 2005;65:1193–7.PubMedCrossRefGoogle Scholar
  182. 182.
    He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet. 2006;367:320–6.PubMedCrossRefGoogle Scholar
  183. 183.
    WHO (World Health Organization). Diet, nutrition and the prevention of chronic diseases. WHO Tech Rep Ser. 2003;916:55.Google Scholar
  184. 184.
    WCRF (World Cancer Research Fund). Food, nutrition, and the prevention of cancer: a global perspective. Washington, DC: World Cancer Research Fund/American Institute for Cancer Research; 1997.Google Scholar
  185. 185.
    IARC. Fruit and vegetables. IARC handbook of cancer prevention, vol. 8. Lyon: IARC Press; 2003.Google Scholar
  186. 186.
    Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.PubMedCrossRefGoogle Scholar
  187. 187.
    Schatzkin A, Subar AF, Thompson FE, et al. Design and serendipity in establishing a large cohort with wide dietary intake distributions: the National Institutes of Health-American association of retired persons diet and health study. Am J Epidemiol. 2001;154:1119–25.PubMedCrossRefGoogle Scholar
  188. 188.
    Key TJ. Fruit and vegetables and cancer risk. Br J Cancer. 2011;104:6–11.PubMedCrossRefGoogle Scholar
  189. 189.
    Boffetta P, Couto E, Wichmann J, et al. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2010;102:529–37.PubMedCrossRefGoogle Scholar
  190. 190.
    Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Sasaki K, Sasaki H, Jonasson F, et al. Racial differences of lens transparency properties with aging and prevalence of age-related cataract applying a WHO classification system. Ophthlamic Res. 2004;36:332–40.CrossRefGoogle Scholar
  192. 192.
    Kaushik S, Wang JJ, Flood V, et al. Dietary glycemic index and the risk of age-related macular degeneration. Am J Clin Nutr. 2008;88:1104–10.PubMedCrossRefGoogle Scholar
  193. 193.
    Parekh N, Voland RP, Moeller SM, et al. Association between dietary fat intake and age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS): an ancillary study of the women’s health initiative. Arch Ophthalmol. 2009;127:1483–93.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Evans JR. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2006;2:CD000254.Google Scholar
  195. 195.
    Evans JR, Heanshaw KS. Antioxidant vitamin and mineral supplements to prevent the development of age-related macular degeneration. Cochrane Database Syst Rev. 2008;1:CD000253.Google Scholar
  196. 196.
    Johnson EJ. Age-related macular degeneration and antioxidant vitamins: recent findings. Cur Opin Clin Nutr Metabol Care. 2010;13:28–33.CrossRefGoogle Scholar
  197. 197.
    Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201.PubMedCrossRefGoogle Scholar
  198. 198.
    Beatty S, Boulton M, Henson D, et al. Macular pigment and age related macular degeneration. Brit J Ophthalmol. 1999;83:867–77.CrossRefGoogle Scholar
  199. 199.
    Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys. 2001;385:28–40.PubMedCrossRefGoogle Scholar
  200. 200.
    Mares-Perlman JA, Fisher AI, Klein R, et al. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol. 2001;153:424–32.PubMedCrossRefGoogle Scholar
  201. 201.
    Gale CR, Hall NF, Phillips DIW, Martyn CH. Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2003;44:2461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Beatty S, Nolan J, Kavanagh H, O’Donovan O. Macular pigment optical density and its relationship with serum and dietary levels of lutein and zeaxanthin. Arch Biochem Biophys. 2004;430:70–6.PubMedCrossRefGoogle Scholar
  203. 203.
    Van Leeuwen R, Boekhoorn S, Vingerling JR, et al. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA. 2005;294:3101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Moeller SM, Parekh N, Tinker L, et al. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Arch Ophthalmol. 2006;124:1151–62.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. JAMA. 1994;272:1413–20.PubMedCrossRefGoogle Scholar
  206. 206.
    Goldberg J, Flowerdew G, Smith E, et al. Factors associated with age-related macular-degeneration. Am J Epidemiol. 1988;128:700–10.PubMedCrossRefGoogle Scholar
  207. 207.
    Asbell PA, Dualan L, Mindel J, et al. Age-related cataract. Lancet. 2005;365:599–609.PubMedCrossRefGoogle Scholar
  208. 208.
    Tan JSL, Mitchell P, Flood V, et al. Antioxidant nutrient intake and the long-term incidence of age-related cataract—the Blue Mountains Eye Study. Am J Clin Nutr. 2008;87:1899–905.PubMedCrossRefGoogle Scholar
  209. 209.
    Moeller SM, Taylor A, Tucker KL, ML MC, Chylack LT Jr, Hankinson SE, Willett WC, Jacques PF. Overall adherence to the dietary guidelines for Americans is associated with reduced prevalence of early age-related nuclear lens opacities in women. J Nutr. 2004;134:1812–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Brown L, Rimm EB, Seddon JM, et al. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr. 1999;70:517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Christen WG, Liu SM, Schaumberg DA, Buring JE. Fruit and vegetable intake and the risk of cataract in women. Am J Clin Nutr. 2005;81:1417–22.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Christen WG, Liu S, Glynn RJ, et al. Dietary carotenoids, vitamins C and E, and risk of cataract in women. Arch Ophthalmol. 2008;126:102–9.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Moeller SM, Voland R, Tinker L, et al. Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the Carotenoids in the Age-Related Eye Disease Study (CAREDS), an ancillary study of the women’s health initiative. Arch Ophthalmol. 2008;126:354–64.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Delcourt C, Carrière I, Delage M, et al. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci. 2006;47:2329–35.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Coleman AL, Stone KL, Kodjebacheva G, et al. Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol. 2008;145:1081–9.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20:380–5.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Morris MC, Evans DA, Tangney CC, et al. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67:1370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol. 2005;57:713–20.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Nooyens AC, Bueno-de-Mesquita HB, van Boxtel MP, et al. Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem cohort study. Br J Nutr. 2011;106:752–61.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Ortega RM, Requejo AM, Andres P, et al. Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr. 1997;66:803–9.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Lee L, Kang SA, Lee HO, et al. Relationships between dietary intake and cognitive function level in Korean elderly people. Public Health. 2001;115:133–8.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Dai Q, Borenstein AR, Wu Y, et al. Fruit and vegetable juices and Alzheimer’s disease: the Kame project. Am J Med. 2006;119:751–9.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Barberger-Gateau P, Raffaitin C, Letenneur L, et al. Dietary patterns and risk of dementia: the three-city cohort study. Neurology. 2007;89:1921–39.CrossRefGoogle Scholar
  224. 224.
    Hughes TF, Andel R, Small BJ, et al. Midlife fruit and vegetable consumption and risk of dementia in late life in Swedish twins. Am J Geriatr Psychiatry. 2010;18:413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Dongowski G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem. 2007;104:390–7.CrossRefGoogle Scholar
  226. 226.
    Story JA, Watterson JJ, Matheson HB, Furumoto EJ. Dietary fiber and bile acid metabolism. Adv Exp Med Biol. 1990;270:43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Marlett JA. Sites and mechanisms for the hypocholesterolemic actions of soluble dietary fiber sources. Adv Exp Med Biol. 1997;427:109–21.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Mahesh S, Desai MS, Seekatz AM, Koroptkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–53.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations