Advertisement

Epigenetics/Epigenomics of Olive Oil and the Mediterranean Diet

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

“Mediterranean diet and olive oil modify gene transcription towards a protective mode.”

References

  1. 1.
    Miggiano GA, De Sanctis R. Nutritional genomics: toward a personalized diet. Clin Ter. 2006;157:355–61.PubMedGoogle Scholar
  2. 2.
    Muller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4:315–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Corella D, Ordovás JM. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms: gene-diet interactions at the genomic, transcriptomic, and epigenomic levels provide novel insights into new mechanisms. BioEssays. 2014;36:526–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA. PREDIMED study investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. New Engl J Med. 2013;368:1279–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Corella D, Carrasco P, Sorlí JV, Estruch R, Rico-Sanz J, Martínez-González MÁ, Salas-Salvadó J, Covas MI, Coltell O, Arós F, Lapetra J, Serra-Majem L, Ruiz-Gutiérrez V, Warnberg J, Fiol M, Pintó X, Ortega-Azorín C, Muñoz MÁ, Martínez JA, Gómez-Gracia E, González JI, Ros E, Ordovás JM. Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high-cardiovascular-risk population. Diabetes Care. 2013;36(11):3803–11.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gonzalo S. Epigenetic alterations in aging. J Appl Physiol. 2010;109:586–97.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida T. Increased homocysteine concentrations and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang YS, Zhi Y, Wang SR. Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine. Pathophysiology. 2009;16:259–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Dong CD, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002;132:2406S–9S.CrossRefPubMedGoogle Scholar
  11. 11.
    Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ. Methylation of the estrogen receptor- α gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46:172–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109:10522–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.CrossRefGoogle Scholar
  14. 14.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol. 2008;18:682–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8:23–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Ann Review Biochem. 2010;79:351–79.CrossRefGoogle Scholar
  20. 20.
    Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bernal JE, Duran C, Papiha SS. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 2012;331:1–10.Google Scholar
  24. 24.
    Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.CrossRefPubMedGoogle Scholar
  25. 25.
    Kai ZS, Pasquinelli AE. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol. 2010;17:5–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009;41:609–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Human Genet. 2011;89:628–33.CrossRefGoogle Scholar
  28. 28.
    de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Geneviève D, Goldenberg A, Oufadem M, Manouvrier S, Munnich A, Vidigal JA, Vekemans M, Lyonnet S, Henrion-Caude A, Ventura A, Amiel J. Germline deletion of the miR-17∼92 cluster causes skeletal and growth defects in humans. Nat Genet. 2011;43:1026–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Musilova K, Mraz M. MicroRNAs in B cell lymphomas: how a complex biology gets more complex. Leukemia. 2014;29:1004–17.CrossRefPubMedGoogle Scholar
  30. 30.
    Võsa U, Vooder T, Kolde R, Fischer K, Välk K, Tõnisson N, Roosipuu R, Vilo J, Metspalu A, Annilo T. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50:812–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Akçakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H, Lui WO. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.PubMedGoogle Scholar
  32. 32.
    Eyking A, Reis H, Frank M, Gerken G, Schmid KW, Cario E. MiR-205 and MiR-373 are associated with aggressive human mucinous colorectal cancer. PLoS One. 2016;11:e0156871.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jones K, Nourse JP, Keane C, Bhatnagar A, Gandhi MK. Plasma MicroRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20:253–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Wu H, Mo YY. Targeting miR-205 in breast cancer. Expert Opin Ther Targets. 2009;13:1439–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu G, Sun Y, Ji P, Li X, Cogdell D, Yang D, Zhang W. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 Axis in ovarian cancer. J Pathol. 2014;233:308–18.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wen SY, Lin Y, Yu YQ, Cao SJ, Zhang R, Yang XM, Zhang ZG. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2015;34:717–25.CrossRefPubMedGoogle Scholar
  38. 38.
    Bernstein C, Prasad AR, Nfonsam V, Bernstein H. DNA damage, DNA repair and cancer. New Res Dir DNA Repair. 2013:413–65.Google Scholar
  39. 39.
    O'Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 2008;4:e1000155.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV. DNA damage, homology-directed repair, and DNA methylation. PLoS Genet. 2007;3:e110.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncology. 2012;14:712–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Spiegl-Kreinecker S, Pirker C, Filipits M, Lötsch D, Buchroithner J, Pichler J, Silye R, Weis S, Micksche M, Fischer J, Berger W. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro-Oncology. 2010;12:28–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Sgarra R, Rustighi A, Tessari MA, Di Bernardo J, Altamura S, Fusco A, Manfioletti G, Giancotti V. Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett. 2004;574:1–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, Fedele M, Pierantoni G, Croce CM, Fusco A. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol. 2003;23:2225–38.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Borman L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J, Wisniewski JR. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 2003;3:6841–51.CrossRefGoogle Scholar
  46. 46.
    Facista A, Nguyen H, Lewis C, Prasad AR, Ramsey L, Zaitlin B, Nfonsam V, Krouse RS, Bernstein H, Payne CM, Stern S, Oatman N, Banerjee B, Bernstein C. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer. Genome Integr. 2012;3:3.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Palmieri D, D'Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J, Fusco A. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31:3857–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Malumbres M. miRNAs and cancer: an epigenetics view. Mol Asp Med. 2013;34:863–74.CrossRefGoogle Scholar
  49. 49.
    Schnekenburger M, Diederich M. Epigenetics offer new horizons for colorectal cancer prevention. Curr Colorectal Cancer Rep. 2012;8:66–81.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012;119:1162–1172.r.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Son DJ, Kumar S, Takabe W, Kim CW, Ni CW, Alberts-Grill N, Jang IH, Kim S, Kim W, Won Kang S, Baker AH, Woong Seo J, Ferrara KW, Jo H. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wan G, Mathur R, Hu X, Zhang X, Lu X. miRNA response to DNA damage. Trends Biochem Sci. 2011;36:478–84.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tessitore A, Cicciarelli G, Del Vecchio F, Gaggiano A, Verzella D, Fischietti M, Vecchiotti D, Capece D, Zazzeroni F, Alesse E. MicroRNAs in the DNA damage/repair network and cancer. Int J Genomics. 2014;2014:820248.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, Bird AR, Cobiac L, Kennedy NA, Michael MZ, Le Leu RK. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7:786–95.CrossRefGoogle Scholar
  55. 55.
    Skårn M, Namløs HM, Noordhuis P, Wang MY, Meza-Zepeda LA, Myklebost O. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21:873–83.CrossRefPubMedGoogle Scholar
  56. 56.
    Zuo Y, Qiang L, Farmer SR. Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem. 2006;281:7960–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Basu R, Fan D, Kandalam V, Lee J, Das SK, Wang X, Baldwin TA, Oudit GY, Kassiri Z. Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. J Biol Chem. 2012;287:44083–96.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Menendez JA, Lupu R. Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18,1 n-9). Curr Pharm Biotechnol. 2006;7:495–502.CrossRefPubMedGoogle Scholar
  60. 60.
    Colomer R, Menéndez JA. Mediterranean diet, olive oil and cancer. Clin Transl Oncol. 2006;8:15–21.CrossRefPubMedGoogle Scholar
  61. 61.
    D'Amore S, Vacca M, Cariello M, Graziano G, D'Orazio A, Salvia R, Sasso RC, Sabbà C, Palasciano G, Moschetta A. Genes and miRNA expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil. Biochim Biophys Acta. 1861;2016:1671–80.Google Scholar
  62. 62.
    Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Konstantinidou V, Khymenets O, Fito M, De La Torre R, Anglada R, Dopazo A, Covas MI. Characterization of human gene expression changes after olive oil ingestion: an exploratory approach. Folia Biol (Praha). 2009;55:85–91.Google Scholar
  64. 64.
    Konstantinidou V, Khymenets O, Covas MI, de la Torre R, Muñoz-Aguayo D, Anglada R, Farré M, Fito M. Time course of changes in the expression of insulin sensitivity-related genes after an acute load of virgin olive oil. OMICS. 2009;13:431–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Camargo A, Ruano J, Fernandez JM, Parnell LD, Jimenez A, Santos-Gonzalez M, Marin C, Perez-Martinez P, Uceda M, Lopez-Miranda J, Perez-Jimenez F. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics. 2010;11:253.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, de la Torre R. Mononuclear cell transcriptome response after sustained virgin olive oil consumption in humans: an exploratory nutrigenomics study. OMICS. 2009;13:7–19.CrossRefPubMedGoogle Scholar
  67. 67.
    Raff M, Tholstrup T, Toubro S, Bruun JM, Lund P, Straarup EM, Christensen R, Sandberg MB, Mandrup S. Conjugated linoleic acids reduce body fat in healthy postmenopausal women. J Nutr. 2009;139:1347–52.CrossRefPubMedGoogle Scholar
  68. 68.
    van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG, de Groot LC, de Vries JH, Müller M, Afman LA. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr. 2009;90:1656–64.CrossRefPubMedGoogle Scholar
  69. 69.
    Castañer O, Covas MI, Khymenets O, Nyyssonen K, Konstantinidou V, Zunft HF, de la Torre R, Muñoz-Aguayo D, Vila J, Fitó M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr. 2012;95:1238–44.CrossRefPubMedGoogle Scholar
  70. 70.
    Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54:669–77.CrossRefPubMedGoogle Scholar
  71. 71.
    Prontera C, Martelli N, Evangelista V, D'Urbano E, Manarini S, Recchiuti A, Dragani A, Passeri C, Davì G, Romano M. Homocysteine modulates the CD40/CD40L system. J Am Coll Cardiol. 2007;49:2182–90.CrossRefPubMedGoogle Scholar
  72. 72.
    Konstantinidou V, Covas MI, Muñoz-Aguayo D, Khymenets O, de la Torre R, Saez G, Tormos Mdel C, Toledo E, Marti A, Ruiz-Gutiérrez V, Ruiz Mendez MV, Fito M. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J. 2010;24:2546–57.CrossRefPubMedGoogle Scholar
  73. 73.
    Konstantinidou V, Covas MI, Sola R, Fitò M. Up-to date knowledge on the in vivo transcriptomic effect of the Mediterranean diet in humans. Mol Nutr Food Res. 2013;57:772–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations