Skip to main content

Extra-virgin Olive Oil, the Mediterranean Diet, and Neurodegenerative Diseases

  • Chapter
  • First Online:
Benefits of the Mediterranean Diet in the Elderly Patient

Part of the book series: Practical Issues in Geriatrics ((PIG))

  • 948 Accesses

Abstract

Among its numerous beneficial effects, Mediterranean diet has been also demonstrated to reduce the risk of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2017;72:30. https://doi.org/10.1038/ejcn.2017.58.

    Article  PubMed  Google Scholar 

  2. Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, Capurso A. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology. 1999;52:1563–9.

    Article  CAS  PubMed  Google Scholar 

  3. Panza F, Solfrizzi V, Colacicco AM, D'Introno A, Capurso C, Torres F, Del Parigi A, Capurso S, Capurso A. Mediterranean diet and cognitive decline. Public Health Nutr. 2004;7:959–63.

    Article  CAS  PubMed  Google Scholar 

  4. Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.

    PubMed  PubMed Central  Google Scholar 

  5. Solfrizzi V, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, D'Onofrio G, Addante F, Sancarlo D, Cascavilla L, Pilotto A, Panza F. Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res. 2011;8:520–42.

    Article  CAS  PubMed  Google Scholar 

  6. Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, Roberts RO. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hanninen T, Hallikainen M, Koivisto K, Helkala EL, Reinikainen KJ, Soininen H, et al. A follow-up study of age-associated memory impairment: neuropsychological predictors of dementia. J Am Geriatr Soc. 1995;43:1007–15.

    Article  CAS  PubMed  Google Scholar 

  8. Brayne C, Calloway P. Normal ageing, impaired cognitive function and senile dementia of Alzheimer type: a continuum? Lancet. 1988;1:1265–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nolan KA, Blass JP. Preventing cognitive decline. Clin Geriatr Med. 1992;8:19–34.

    Article  PubMed  CAS  Google Scholar 

  10. Fillit HM. The clinical significance of normal cognitive decline in late life. In: Fillit HM, Butler RN, editors. Cognitive decline. Strategies for prevention. Oxford: Oxford University Press; 1997. p. 1–7.

    Google Scholar 

  11. Breteler MM, Claus JJ, Grobbee DE, Hofman A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam study. Br Med J. 1994;308:1604–8.

    Article  CAS  Google Scholar 

  12. Launer LJ, Masaki K, Petrovich H, Foley D, Havlik RJ. The association between midlife blood pressure levels and latelife cognitive function. J Am Med Assoc. 1995;274:1846–51.

    Article  CAS  Google Scholar 

  13. Richardson JT. Cognitive function in diabetes mellitus. Neurosci Biobehav Rev. 1990;14:385–8.

    Article  CAS  PubMed  Google Scholar 

  14. Blazer D, Burchett B, Service C, George LK. The association of age and depression among the elderly: an epidemiologic exploration. J Gerontol. 1991;46:M210–5.

    Article  CAS  PubMed  Google Scholar 

  15. Rogers RL, Meyer JS, Mortal KF. After reaching retirement age, physical activity sustains cerebral perfusion and cognition. J Am Geriatr Soc. 1990;38:123–8.

    Article  CAS  PubMed  Google Scholar 

  16. White LR, Foley DJ, Havlik RJ. Lifestyle risk factors for cognitive impairment. In: Fillit HM, Butler RN, editors. Cognitive decline. Strategies for prevention. Oxford: Oxford University Press; 1997. p. 23–32.

    Google Scholar 

  17. Sahyoun NR, Otradovec CL, Hartz SC, Jacob RA, Peters H, Russell RM, et al. Dietary intakes and biochemical indicators of nutritional status in an elderly, institutionalized population. Am J Clin Nutr. 1988;47:524–33.

    Article  CAS  PubMed  Google Scholar 

  18. Goodwin J, Goodwin J, Garry P. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA. 1983;249(21):2917.

    Article  CAS  PubMed  Google Scholar 

  19. Capurso A, Solfrizzi V, Panza F, Tores F, Mastroianni F, Grassi A, Del Parigi A, Capurso C, Pirozzi MR, Centonze S, Misciagna G. Dietary patterns and cognitive functions in elderly subjects. Aging Clin Exp Res. 1997;9(Suppl. 4):45–7.

    Article  CAS  Google Scholar 

  20. Solfrizzi V, Panza F, Capurso A. The role of diet in cognitive decline. J Neural Transm. 2003;110:95–110.

    PubMed  CAS  Google Scholar 

  21. Jones CB, Arai T, Rapoport SI. Evidence for the involvement of docosahexanoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem Res. 1997;22:663–70.

    Article  CAS  PubMed  Google Scholar 

  22. Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res. 1999;56:565–70.

    Article  CAS  PubMed  Google Scholar 

  23. Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM. Age-associated changes in the content and fatty acids composition of brain glycerophospholipids. Comparative Biochemistry and Physiology. Part B. Biochem Mol Biol. 1995;112:331–43.

    Article  CAS  Google Scholar 

  24. Marzo I, Martinez-Lorenzo MJ, Anel A, Desportes P, Alava MA, Naval J, et al. Biosynthesis of unsaturated fatty acids in the main cell lineages of human leukemia and lymphoma. Biochim Biophys Acta. 1995;1257:140–8.

    Article  PubMed  Google Scholar 

  25. Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive functions in very old men. Am J Epidemiol. 1997;145:33–41.

    Article  CAS  PubMed  Google Scholar 

  26. Solfrizzi V, Panza F, Colacicco AM, D'Introno A, Capurso C, Torres F, Grigoletto F, Maggi S, Del Parigi A, Reiman EM, Caselli RJ, Scafato E, Farchi G, Capurso A, Italian Longitudinal Study on Aging Working Group. Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology. 2004;63:1882–91.

    Article  CAS  PubMed  Google Scholar 

  27. Maioli F, Coveri M, Pagni P, Chiandetti C, Marchetti C, Ciarrocchi R, Ruggero C, Nativio V, Onesti A, D'Anastasio C, Pedone V. Conversion of mild cognitive impairment to dementia in elderly subjects: a preliminary study in a memory and cognitive disorder unit. Arch Gerontol Geriatr. 2007;44(Suppl 1):233–41.

    Article  PubMed  Google Scholar 

  28. Rozzini L, Chilovi BV, Conti M, Bertoletti E, Delrio I, Trabucchi M, Padovani A. Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. Int J Geriatr Psychiatry. 2007;22:1217–22.

    Article  PubMed  Google Scholar 

  29. Fung TT, McCullough ML, Newby PK, Manson JE, Meigs JB, Rifai N, Willett WC, Hu FB. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2005;82:163–73.

    Article  CAS  PubMed  Google Scholar 

  30. Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D’Andrea F, D’Armiento M, Giugliano D. Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. JAMA. 2004;291:2978–84.

    Article  CAS  PubMed  Google Scholar 

  31. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004;44:152–8.

    Article  PubMed  Google Scholar 

  32. Steele M, Stuchbury G, Munch G. The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp Gerontol. 2007;42:28–36.

    Article  CAS  PubMed  Google Scholar 

  33. Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351:56–67.

    Article  CAS  PubMed  Google Scholar 

  34. Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, Solfrizzi V. Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis. 2010;22:715–40.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts RO, Geda YE, Cerhan JR, Knopman DS, Cha RH, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, O’Connor HM, Petersen RC. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dement Geriatr Cogn Disord. 2010;29:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panza F, Capurso C, D’Introno A, Colacicco AM, Del Parigi A, Gagliardi G, Breglia G, Capurso A, Solfrizzi V. Mediterranean diet, mild cognitive impairment, and Alzheimer’s disease. Exp Gerontol. 2007;42:6–7. author reply 8–9

    Article  PubMed  Google Scholar 

  37. Eskelinen MH, Ngandu T, Helkala EL, Tuomilehto J, Nissinen A, Soininen H, Kivipelto M. Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry. 2008;23:741–7.

    Article  PubMed  Google Scholar 

  38. Singh RB, Dubnov G, Niaz MA, Ghosh S, Singh R, Rastogi SS, Manor O, Pella D, Berry EM. Effect of an indo-Mediterranean diet on progression of coronary artery disease in high risk patients (indo-Mediterranean diet heart study): a randomised single-blind trial. Lancet. 2002;360:1455–61.

    Article  PubMed  Google Scholar 

  39. Psaltopoulou T, Kyrozis A, Stathopoulos P, Trichopoulos D, Vassilopoulos D, Trichopoulou A. Diet, physical activity and cognitive impairment among elders: the EPIC-Greece cohort (European prospective investigation into cancer and nutrition). Public Health Nutr. 2008;11:1054–62.

    Article  CAS  PubMed  Google Scholar 

  40. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–6.

    Article  CAS  PubMed  Google Scholar 

  41. Jula A, Marniemi J, Huupponen R, Virtanen A, Rastas M, Ronnemaa T. Effects of diet and simvastatin on serum lipids, insulin, and antioxidants in hypercholesterolemic men: a randomized controlled trial. JAMA. 2002;287:598–605.

    Article  CAS  PubMed  Google Scholar 

  42. Hendrie HC, Osuntokun BO, Hall KS, Ogunniyi AO, Hui SL, Unverzagt FW, Gureje O, Rodenberg CA, Baiyewu O, Musick BS. Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am J Psychiatr. 1995;152:1485–92.

    Article  CAS  PubMed  Google Scholar 

  43. Graves AB, Larson EB, Edland SD, Bowen JD, McCormick WC, McCurry SM, Rice MM, Wenzlow A, Uomoto JM. Prevalence of dementia and its subtypes in the Japanese American population of King County, Washington state. The kame project. Am J Epidemiol. 1996;144:760–71.

    Article  CAS  PubMed  Google Scholar 

  44. White L, Petrovitch H, Ross GW, Masaki KH, Abbott RD, Teng EL, Rodriguez BL, Blanchette PL, Havlik RJ, Wergowske G, Chiu D, Foley DJ, Murdaugh C, Curb JD. Prevalence of dementia in older Japanese American men in Hawaii: the Honolulu–Asia aging study. J Am Med Assoc. 1996;276:955–60.

    Article  CAS  Google Scholar 

  45. Harman D. Free radical theory of aging: Alzheimer’s disease pathogenesis. Age. 1995;18:97–119.

    Article  Google Scholar 

  46. Smith MA, Sayre L, Perry G. Morphological aspects of oxidative damage in Alzheimer’s disease. In: Beal MF, Howell H, Bodis-Wollner I, editors. Mitochondria and free radicals in neurodegenerative diseases. New York: WileyLiss Inc.; 1997. p. 50.

    Google Scholar 

  47. Hulette C, Nochlin D, McKeel D, Morris JC, Mirra SS, Sumi SM, Heyman A. Clinical–neuropathologic findings in multi-infarct dementia: a report of six autopsied cases. Neurology. 1997;48:668–72.

    Article  CAS  PubMed  Google Scholar 

  48. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer’s disease. The Nun study. J Am Med Assoc. 1977;277:811–7.

    Google Scholar 

  49. Grant B. Dietary links to Alzheimer’s disease. Alzheimer’s Dis Rev. 1997;2:42–55.

    CAS  Google Scholar 

  50. Grant B. Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis. 1999;1:197–201.

    Article  CAS  PubMed  Google Scholar 

  51. Kalmijn S, Lauher LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann Neurol. 1997;42:776–82.

    Article  CAS  PubMed  Google Scholar 

  52. Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R. Wine consumption and the elderly: a prospective community study in the Bordeaux area. Rev Neurol. 1997;153:185–92.

    PubMed  CAS  Google Scholar 

  53. Dorozynski A. Wine may prevent dementia. Br Med J. 1997;314:997.

    CAS  Google Scholar 

  54. Truelsen T, Thudium D, Gronbaek M. Amount and type of alcohol and risk of dementia: the Copenhagen City heart study. Neurology. 2002;59:1313–9.

    Article  PubMed  Google Scholar 

  55. Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Del Parigi A, Baldassarre G, Scapicchio P, Scafato E, Amodio M, Capurso A, Panza F, Italian Longitudinal Study on Aging Working Group. Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology. 2007;68:1790–9.

    Article  CAS  PubMed  Google Scholar 

  56. Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M. Oral administration of (−) catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res. 1998;29:359–65.

    Article  CAS  PubMed  Google Scholar 

  57. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol. 1999;57:199–208.

    Article  CAS  PubMed  Google Scholar 

  58. Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol. 2000;131:711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett. 2000;281:123–6.

    Article  CAS  PubMed  Google Scholar 

  60. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70:603–14.

    Article  CAS  PubMed  Google Scholar 

  61. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–82.

    Article  CAS  PubMed  Google Scholar 

  62. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87:172–81.

    Article  CAS  PubMed  Google Scholar 

  63. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Luceri C, Bigagli E, Pitozzi V, Giovannelli LA. Nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr. 2017;56:865–77.

    Article  CAS  PubMed  Google Scholar 

  65. Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct. 2012;3:745–52.

    Article  CAS  PubMed  Google Scholar 

  66. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348:1356–64.

    Article  CAS  PubMed  Google Scholar 

  67. Tanner CM. Advances in environmental epidemiology. Mov Disord. 2010;25(Suppl 1):S58–62.

    Article  PubMed  Google Scholar 

  68. Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA. 1999;281:341–6.

    Article  CAS  PubMed  Google Scholar 

  69. Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A. Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol. 2002;52:793–801.

    Article  PubMed  Google Scholar 

  70. Chen H, O'Reilly E, McCullough ML, et al. Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol. 2007;165:998–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Park M, Ross GW, Petrovitch H, et al. Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology. 2005;64:1047–51.

    Article  CAS  PubMed  Google Scholar 

  72. Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr. 2007;86:1486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N. The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord. 2012;27:771–4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–608.

    Article  PubMed  Google Scholar 

  75. Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357(6357):1255–61. https://doi.org/10.1126/science.aam9080.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capurso, A., Crepaldi, G., Capurso, C. (2018). Extra-virgin Olive Oil, the Mediterranean Diet, and Neurodegenerative Diseases. In: Benefits of the Mediterranean Diet in the Elderly Patient. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-78084-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78084-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78083-2

  • Online ISBN: 978-3-319-78084-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics