Advertisement

Location and Methods of Investigation

  • Mikalai Filonchyk
  • Haowen Yan
Chapter

Abstract

Lanzhou (N36°02′ and E103°48′) is located in Northwestern China. It is the capital of Gansu Province. Its population is 3.68 million people (in 2016). The total area is 13085.6 km2. It is located in the upper reaches of the Yellow River, near the border between the Tibetan Plateau, the Loess Plateau, and the Inner Mongolia Plateau (Fig. 2.1). Lanzhou is an industrial city with a developed chemical, oil, and flower industry, manufacturing of heavy equipment and coal, and production of electricity from plants. Lanzhou has a major railroad, road, and air hub for the whole Northwestern China. For this reason, Lanzhou became an important strategic and trading center on the Silk Road in ancient times.

References

  1. Christensen, J. H. (1997). The Danish eulerian hemispheric model – a three-dimensional air pollution model used for the arctic. Atmospheric Environment, 31(24), 4169–4191.CrossRefGoogle Scholar
  2. Hogan, T. F., & Brody, L. R. (1993). Sensitivity studies of the Navy's global forecast model parameterizations and evaluation of improvements to NOGAPS. Monthly Weather Review, 121(8), 2373–2395.CrossRefGoogle Scholar
  3. Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J., & Tsay, S. C. (2013). Enhanced deep blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118, 9296–9315.Google Scholar
  4. Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., & Weimer, C. (2009). CALIPSO Lidar description and performance assessment. Journal of Atmospheric and Oceanic Technology, 26(7), 1214–1228.CrossRefGoogle Scholar
  5. Lee, H. J., Chatfield, R. B., & Strawa, A. W. (2016). Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS Deep Blue AOD and Land Use Regression in California, United States. Environmental Science and Technology, 50(12), 6546–6555.CrossRefGoogle Scholar
  6. Levy, R. C., Remer, L. A., Kleidman, R. G., & Mattoo, S. (2010a). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics & Discussions, 10(6), 10399–10420.CrossRefGoogle Scholar
  7. Levy, R. C., Remer, L. A., Kleidman, R. G., & Mattoo, S. (2010b). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics and Discussions, 10(6), 10399–10420.CrossRefGoogle Scholar
  8. Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display system: READY. Environmental Modelling and Software, 95, 210–228.CrossRefGoogle Scholar
  9. Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. (2015a). MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research Atmospheres, 119(24), 13965–13989.CrossRefGoogle Scholar
  10. Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M. J., & Meister, G. (2015b). Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. Journal of Geophysical Research, 120(23), 12157–12174.Google Scholar
  11. Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2016). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077.CrossRefGoogle Scholar
  12. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., & Bhartia, P. K. (2007a). Aerosols and surface UV products from ztions: An overview. Journal of Geophysical Research Atmospheres, 112(D24), 1–14.CrossRefGoogle Scholar
  13. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., & Bhartia, P. K. (2007b). Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. Journal of Geophysical Research Atmospheres, 112(D24), 1–14.CrossRefGoogle Scholar
  14. Torres, O., Ahn, C., & Chen, Z. (2013). Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11), 3257–3270.CrossRefGoogle Scholar
  15. Winker, D. M., Pelon, J., Coakley, J. A. J., Ackerman, S. A., Charlson, R. J., & Colarco, P. R. (2010). The CALIPSO Mission: A global 3D view of aerosols and clouds. Bulletin of the American Meteorological Society, 91(9), 1211–1229.CrossRefGoogle Scholar
  16. Zhang, J., & Tang, C. G. (2012). Vertical distribution structure and characteristic of aerosol over Arid region in a dust process of spring. Plateau Meteorology, 31(1), 156–166.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mikalai Filonchyk
    • 1
  • Haowen Yan
    • 1
  1. 1.Department of Geographic Information Science, Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations