Medical Applications of X-Ray Nanochemistry

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


Three main aspects of medical applications of X-ray nanochemistry are discussed in this chapter. The first part is enhanced X-ray imaging of tumors in animals or phantoms using X-ray absorbing nanomaterials. The second is nanomaterial-assisted cancer treatment using X-rays. The treatment is performed on both cancer cell lines and tumors in animals, which are reviewed in two sections. Theoretical modeling of treatment is also discussed in another section. In addition, pre-clinical and clinical studies and miscellaneous methods such as scanning focusing needle beam X-rays are also presented in this part. The third part is X-ray activated or triggered nanodrug release using X-ray nanochemistry. These nanodrugs resemble prodrugs with the exception of the nanodrugs are activated by X-rays. In addition to these three parts, a general description of in vitro and in vivo protocols is also given at the beginning of the chapter, and recent reviews in these fields are mentioned at the end of this chapter.


Biological assays Clinical trials Contrast agents Damage to cells Damage to tumors Delivery of nanomaterials Detection of nanomaterials Endpoints Imaging Imaging of nanomaterials Preclinical trials Simulation of enhancement Targeting Targeting by nanomaterials X-ray-triggered release 


  1. 1.
    Kassis, A. I. (2003). Cancer therapy with Auger electrons: Are we almost there? Journal of Nuclear Medicine, 44, 1479–1481.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sung, W., Jung, S., & Ye, S. J. (2016). Evaluation of the microscopic dose enhancement for nanoparticle-enhanced Auger therapy. Physics in Medicine and Biology, 61, 7522–7535.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Guo, T. (2004, August). Nanoparticle enhanced X-ray therapy. ACS Annual Meeting, Philadelphia.Google Scholar
  4. 4.
    Guo, T. (2006). Nanoparticle radiosensitizers. US patent application number: US 11/728,943; publication number: US20080003183 A1 and WO2006037081A2.Google Scholar
  5. 5.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  7. 7.
    Roco, M. C., & Tech, N. S. E. (2004). Nanoscale science and engineering: Unifying and transforming tools. AICHE Journal, 50, 890–897.CrossRefGoogle Scholar
  8. 8.
    Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive diselenide block co-polymer micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., & Levy, L. (2012). Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncology, 8, 1167–1181.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chen, J., Li, M. F., Yi, X., Zhao, Q., Chen, L., Yang, C., Wu, J. C., & Yang, K. (2017). Synergistic effect of thermo-radiotherapy using au@FeS Core-Shell nanoparticles as multifunctional therapeutic nanoagents. Particle and Particle Systems Characterization, 34.CrossRefGoogle Scholar
  12. 12.
    Stewart, C., Konstantinov, K., McKinnon, S., Guatelli, S., Lerch, M., Rosenfeld, A., Tehei, M., & Corde, S. (2016). First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 32, 1444–1452.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chang, Y. Z., He, L. Z., Li, Z. B., Zeng, L. L., Song, Z. H., Li, P. H., Chan, L., You, Y. Y., Yu, X. F., Chu, P. K., et al. (2017). Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano, 11, 4848–4858.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R., & Mikkelsen, R. B. (2001). Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Research, 61, 3894–3901.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang, X. M., Yang, H. J., Gu, K., Chen, J. A., Rui, M. J., & Jiang, G. L. (2011). In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. International Journal of Nanomedicine, 6, 437–444.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li, X., Zhou, H. Y., Yang, L., Du, G. Q., Pai-Panandiker, A. S., Huang, X. F., & Yan, B. (2011). Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials, 32, 2540–2545.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rahman, W. N., Corde, S., Yagi, N., Aziz, S. A. A., Annabell, N., & Geso, M. (2014). Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine, 9, 2459–2467.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Regulla, D. F., Hieber, L. B., & Seidenbusch, M. (1998). Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiation Research, 150, 92–100.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.Google Scholar
  20. 20.
    Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Choi, G. H., Seo, S. J., Kim, K. H., Kim, H. T., Park, S. H., Lim, J. H., & Kim, J. K. (2012). Photon activated therapy (PAT) using monochromatic synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: Feasibility study of PAT for the treatment of superficial malignancy. Radiation Oncology, 7, 184.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., Lee, C. F., Lee, K. H., Hwu, Y., Lee, Y. C., et al. (2008). Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 19(295104), 1–5.Google Scholar
  23. 23.
    Xu, L. F., Qiu, X. F., Zhang, Y. T., Cao, K., Zhao, X. Z., Wu, J. H., Hu, Y. Q., & Guo, H. Q. (2016). Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply. Journal of Translational Medicine, 14, 268.Google Scholar
  24. 24.
    Kleinauskas, A., Rocha, S., Sahu, S., Sun, Y. P., & Juzenas, P. (2013). Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology, 24, 325103.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Youkhana, E., Feltis, B., Blencowe, A., & Geso, M. (2017). Titanium dioxide nanoparticles as radiosensitisers: An in vitro and phantom-based study. International Journal of Medical Sciences, 14, 602–614.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27, 215101.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pan, C. L., Chen, M. H., Tung, F. I., & Liu, T. Y. (2017). A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomaterialia, 47, 159–169.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., et al. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physics in Medicine and Biology, 55, 931–945.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., et al. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research, 56, 77–89.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bhattarai, S. R., Derry, P. J., Aziz, K., Singh, P. K., Khoo, A. M., Chadha, A. S., Liopo, A., Zubarev, E. R., & Krishnan, S. (2017). Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale, 9, 5085–5093.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Diaz, R., Hariri, G., Passarella, R. J., Wu, H., Fu, A., & Hallahan, D. E. (2008). Radiation-guided platinum drug delivery using recombinant peptides. International Journal of Radiation Oncology, Biology, Physics, 72, S1–S1.CrossRefGoogle Scholar
  32. 32.
    Wang, G. D., Nguyen, H. T., Chen, H. M., Cox, P. B., Wang, L. C., Nagata, K., Hao, Z. L., Wang, A., Li, Z. B., & Xie, J. (2016). X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics, 6, 2295–2305.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yang, W. S., Read, P. W., Mi, J., Baisden, J. M., Reardon, K. A., Larner, J. M., Helmke, B. P., & Sheng, K. (2008). Semiconductor nanoparticles as energy mediators for photosensitizer-enhanced radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 72, 633–635.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shi, M. H., Paquette, B., Thippayamontri, T., Gendron, L., Guerin, B., & Sanche, L. (2016). Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. International Journal of Nanomedicine, 11, 5323–5333.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P., & Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 173, 719–728.CrossRefPubMedGoogle Scholar
  36. 36.
    Yong, Y., Zhang, C. F., Gu, Z. J., Du, J. F., Guo, Z., Dong, X. H., Xie, J. N., Zhang, G. J., Liu, X. F., & Zhao, Y. L. (2017). Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano, 11, 7164–7176.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Liu, X., Liu, Y., Zhang, P. C., Jin, X. D., Zheng, X. G., Ye, F., Chen, W. Q., & Li, Q. (2016). The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation. International Journal of Nanomedicine, 11, 3517–3530.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Al Zaki, A., Joh, D., Cheng, Z. L., De Barros, A. L. B., Kao, G., Dorsey, J., & Tsourkas, A. (2014). Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 8, 104–112.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Saberi, A., Shahbazi-Gahrouei, D., Abbasian, M., Fesharaki, M., Baharlouei, A., & Arab-Bafrani, Z. (2017). Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. International Journal of Radiation Biology, 93, 315–323.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kim, S. R., & Kim, E. H. (2017). Gold nanoparticles as dose-enhancement agent for kilovoltage X-ray therapy of melanoma. International Journal of Radiation Biology, 93, 517–526.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.CrossRefGoogle Scholar
  42. 42.
    Ma, N. N., Jiang, Y. W., Zhang, X. D., Wu, H., Myers, J. N., Liu, P. D., Jin, H. Z., Gu, N., He, N. Y., Wu, F. G., et al. (2016). Enhanced radiosensitization of gold Nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Applied Materials & Interfaces, 8, 28480–28494.CrossRefGoogle Scholar
  43. 43.
    Fang, X., Wang, Y. L., Ma, X. C., Li, Y. Y., Zhang, Z. L., Xiao, Z. S., Liu, L. J., Gao, X. Y., & Liu, J. (2017). Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. Journal of Materials Chemistry B, 5, 4190–4197.CrossRefGoogle Scholar
  44. 44.
    Li, Y. J., Perkins, A. L., Su, Y., Ma, Y. L., Colson, L., Horne, D. A., & Chen, Y. (2012). Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 109, 4092–4097.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Butterworth, K. T., Coulter, J. A., Jain, S., Forker, J., McMahon, S. J., Schettino, G., Prise, K. M., Currell, F. J., & Hirst, D. G. (2010). Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology, 21(295101), 1–9.Google Scholar
  46. 46.
    Klein, S., Sommer, A., Distel, L. V. R., Hazemann, J. L., Kroner, W., Neuhuber, W., Muller, P., Proux, O., & Kryschi, C. (2014). Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. The Journal of Physical Chemistry. B, 118, 6159–6166.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ito, S., Miyoshi, N., Degraff, W. G., Nagashima, K., Kirschenbaum, L. J., & Riesz, P. (2009). Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 43, 1214–1224.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lee, S. M., Tsai, D. H., Hackley, V. A., Brechbiel, M. W., & Cook, R. F. (2013). Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation. Nanoscale, 5, 5252–5256.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Huang, P., Bao, L., Zhang, C. L., Lin, J., Luo, T., Yang, D. P., He, M., Li, Z. M., Gao, G., Gao, B., et al. (2011). Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials, 32, 9796–9809.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jain, S., Coulter, J. A., Hounsell, A. R., Butterworth, K. T., McMahon, S. J., Hyland, W. B., Muir, M. F., Dickson, G. R., Prise, K. M., Currell, F. J., et al. (2011). Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. International Journal of Radiation Oncology, Biology, Physics, 79, 531–539.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1.
  52. 52.
    Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy. Department of Medical Biophysics, University of Toronto, Toronto, Vol. Master of Science, p. 81.Google Scholar
  53. 53.
    Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hwu, J. R., Lin, Y. S., Josephrajan, T., Hsu, M. H., Cheng, F. Y., Yeh, C. S., Su, W. C., & Shieh, D. B. (2009). Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. Journal of the American Chemical Society, 131, 66–68.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Liu, Y. F., Zhang, Y. B., Wang, S. P., Pope, C., & Chen, W. (2008). Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 92, 143901.CrossRefGoogle Scholar
  56. 56.
    Clement, S., Deng, W., Camilleri, E., Wilson, B. C., & Goldys, E. M. (2016). X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Scientific Reports, 6, 19954.Google Scholar
  57. 57.
    Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rahman, W. N., Davidson, R., Yagi, N., Bansal, V., Geso, M., & Darby, I. (2011). Influence of gold nanoparticles on radiation dose enhancement and cellular migration in microbeam-irradiated cells. BioNanoScience, 1, 4–13 4.CrossRefGoogle Scholar
  59. 59.
    Setua, S., Ouberai, M., Piccirillo, S. G., Watts, C., & Welland, M. (2014). Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 6, 10865–10873.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wu, H., Lin, J., Liu, P. D., Huang, Z. H., Zhao, P., Jin, H. Z., Ma, J., Wen, L. P., & Gu, N. (2016). Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials, 101, 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Retif, P., Reinhard, A., Paquot, H., Jouan-Hureaux, V., Chateau, A., Sancey, L., Barberi-Heyob, M., Pinel, S., & Bastogne, T. (2016). Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. International Journal of Nanomedicine, 11, 6169–6179.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang, G. N., Gao, W., Zhang, X. J., & Mei, X. F. (2016). Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T-1-T-2 dual MRI and CT imaging of tumor. Scientific Reports, 6, 28258.Google Scholar
  63. 63.
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.CrossRefPubMedGoogle Scholar
  65. 65.
    Kong, T., Zeng, J., Wang, X. P., Yang, X. Y., Yang, J., McQuarrie, S., McEwan, A., Roa, W., Chen, J., & Xing, J. Z. (2008). Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 4, 1537–1543.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Roa, W., Zhang, X. J., Guo, L. H., Shaw, A., Hu, X. Y., Xiong, Y. P., Gulavita, S., Patel, S., Sun, X. J., Chen, J., et al. (2009). Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20(375101), 1–9.Google Scholar
  67. 67.
    Antosh, M. P., Wijesinghe, D. D., Shrestha, S., Lanou, R., Huang, Y. H., Hasselbacher, T., Fox, D., Neretti, N., Sun, S., Katenka, N., et al. (2015). Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 112, 5372–5376.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Her, S., Cui, L., Bristow, R. G., & Allen, C. (2016). Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiation Research, 185, 549–562.CrossRefPubMedGoogle Scholar
  69. 69.
    Yu, B., Liu, T., Du, Y., Luo, Z., Zheng, W., & Chen, T. (2016). X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloid Surface B, 139, 180–189.CrossRefGoogle Scholar
  70. 70.
    McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., et al. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 100, 412–416.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yu, X. J., Li, A., Zhao, C. Z., Yang, K., Chen, X. Y., & Li, W. W. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 11, 3990–4001.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu, J. X., Du, Y. H., Liu, J., Zhao, Z., Cheng, K., Chen, Y. S., Wei, Y. C., Song, W. Y., & Zhang, X. (2017). Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 203, 704–714.CrossRefGoogle Scholar
  73. 73.
    Khoshgard, K., Hashemi, B., Arbabi, A., Rasaee, M. J., & Soleimani, M. (2014). Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Physics in Medicine and Biology, 59, 2249–2263.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zhou, H. Y., Zhang, Y., Su, G. X., Zhai, S. M., & Yan, B. (2013). Enhanced cancer cell killing by a targeting gold nanoconstruct with doxorubicin payload under X-ray irradiation. RSC Advances, 3, 21596–21603.CrossRefGoogle Scholar
  75. 75.
    Chithrani, B. D., & Chan, W. C. W. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7, 1542–1550.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Dou, Y., Guo, Y. Y., Li, X. D., Li, X., Wang, S., Wang, L., Lv, G. X., Zhang, X. N., Wang, H. J., Gong, X. Q., et al. (2016). Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano, 10, 2536–2548.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Roa, W., Yang, A., Li, P., Kong, T., Yang, J., Pervez, N., McQuarrie, S., McEwan, A., Chen, J., & Xing, J. (2007). Functional gold nanoparticles enhance radiation cytotoxicity in breast and prostate cancer cells. Radiotherapy and Oncology, 84, S83–S83.Google Scholar
  78. 78.
    Kudgus, R. A., Szabolcs, A., Khan, J. A., Walden, C. A., Reid, J. M., Robertson, J. D., Bhattacharya, R., & Mukherjee, P. (2013). Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One, 8, e57522.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhu, Z. J., Tang, R., Yeh, Y. C., Miranda, O. R., Rotello, V. M., & Vachet, R. W. (2012). Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. Analytical Chemistry, 84, 4321–4326.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Subiel, A., Ashmore, R., & Schettino, G. (2016). Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles. Theranostics, 6, 1651–1671.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hariri, G., Yan, H. P., Wang, H. L., Han, Z. Z., & Hallahan, D. E. (2010). Radiation-guided drug delivery to mouse models of lung cancer. Clinical Cancer Research, 16, 4968–4977.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kang, B., Mackey, M. A., & El-Sayed, M. A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society, 132, 1517–1519.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nativo, P., Prior, I. A., & Brust, M. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2, 1639–1644.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2, 3–44.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ng, S. K., Ma, L., Qiu, Y., Xun, X., Webster, T. J., & Su, M. (2016). Enhancing cancer radiation therapy with cell penetrating peptide modified gold nanoparticles. Austin Journal of Biomedical Engineering, 3(id1033), 1031–1038.Google Scholar
  87. 87.
    Hainfeld, J. F., & Smilowitz, H. M. (2015). Nuclear targeted gold nanoparticles for radiation enhancement. Cancer Research, 75, Abstract 1807.CrossRefGoogle Scholar
  88. 88.
    Cormode, D. P., Naha, P. C., & Fayad, Z. A. (2014). Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media & Molecular Imaging, 9, 37–52.CrossRefGoogle Scholar
  89. 89.
    Xu, C. J., Tung, G. A., & Sun, S. H. (2008). Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 20, 4167–4169.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cheong, S. K., Jones, B. L., Siddiqi, A. K., Liu, F., Manohar, N., & Cho, S. H. (2010). X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays. Physics in Medicine and Biology, 55, 647–662.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Jones, B. L., & Cho, S. H. (2011). The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: A Monte Carlo study. Physics in Medicine and Biology, 56, 3719–3730.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jones, B., Manohar, N., Karellas, A., & Cho, S. (2012). Polychromatic cone-beam X-ray fluorescence computed tomography of gold nanoparticle-loaded objects. Medical Physics, 39, 3986–3987.CrossRefGoogle Scholar
  93. 93.
    Manohar, N., Reynoso, F. J., & Cho, S. H. (2013). Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source. Medical Physics, 40, 080702.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Manohar, N., Jones, B. L., & Cho, S. H. (2014). Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study. Medical Physics, 41, 101906.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Meng, L., Fu, G., Li, N., Newville, M., Eng, P., & La Riviere, P. (2010). X-ray fluorescence tomography using imaging detectors. Proceedings of SPIE, 7804, B1–B9.Google Scholar
  96. 96.
    Wen, H., Bennett, E. E., Hegedus, M. A., & Carroll, S. C. (2008). Spatial harmonic imaging of X-ray scattering initial results. IEEE Transactions on Medical Imaging, 27, 997–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bazalova, M., Kuang, Y., Pratx, G., & Xing, L. (2012). Investigation of X-ray fluorescence computed tomography (XFCT) and K-edge imaging. IEEE Transactions on Medical Imaging, 31, 1620–1627.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Bazalova, M., Weil, M. D., Wilfley, B., & Graves, E. E. (2012). Monte Carlo model of the scanning beam digital x-ray (SBDX) source. Physics in Medicine and Biology, 57, 7381–7394.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kuang, Y., Pratx, G., Bazalova, M., Meng, B. W., Qian, J. G., & Xing, L. (2013). First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging. IEEE Transactions on Medical Imaging, 32, 262–267.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Guo, R., Wang, H., Peng, C., Shen, M. W., Pan, M. J., Cao, X. Y., Zhang, G. X., & Shi, X. Y. (2010). X-ray attenuation property of dendrimer-entrapped gold nanoparticles. Journal of Physical Chemistry C, 114, 50–56.CrossRefGoogle Scholar
  101. 101.
    Hariri, G., Wellons, M. S., Morris, W. H., Lukehart, C. M., & Hallahan, D. E. (2011). Multifunctional FePt nanoparticles for radiation-guided targeting and imaging of cancer. Annals of Biomedical Engineering, 39, 946–952.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Luo, T., Huang, P., Gao, G., Shen, G. X., Fu, S., Cui, D. X., Zhou, C. Q., & Ren, Q. S. (2011). Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Optics Express, 19, 17030–17039.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rand, D., Ortiz, V., Liu, Y. A., Derdak, Z., Wands, J. R., Taticek, M., & Rose-Petruck, C. (2011). Nanomaterials for X-ray imaging: Gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma. Nano Letters, 11, 2678–2683.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Guo, T., & Davidson, R. A. (2016). Nanoparticle assisted scanning focusing X-ray fluorescence imaging and enhanced treatment. Radiat Res. 185, 87-95.Google Scholar
  105. 105.
    Guo, T., & Davidson, R. A. (2015). Nanoparticle assisted scanning focusing X-ray fluorescence imaging and enhanced treatment. Patent publication number: WO/2015/031675; international application number: PCT/US2014/053259. Publication date: May 03, 2015. Google Scholar
  106. 106.
    Boote, E., Fent, G., Kattumuri, V., Casteel, S., Katti, K., Chanda, N., Kannan, R., Katti, K., & Churchill, R. (2010). Gold nanoparticle contrast in a phantom and juvenile swine: Models for molecular imaging of human organs using X-ray computed tomography. Academic Radiology, 17, 410–417.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.CrossRefPubMedGoogle Scholar
  108. 108.
    Hainfeld, J. F., Smilowitz, H. M., O'Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 8, 1601–1609.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Alric, C., Taleb, J., Le Duc, G., Mandon, C., Billotey, C., Le Meur-Herland, A., Brochard, T., Vocanson, F., Janier, M., Perriat, P., et al. (2008). Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. Journal of the American Chemical Society, 130, 5908–5915.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Yusa, N., Jiang, M., Mizuno, K., & Uesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2, 33–39.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jones, B. L., Manohar, N., Reynoso, F., Karellas, A., & Cho, S. H. (2012). Experimental demonstration of benchtop x-ray fluorescence computed tomography (XFCT) of gold nanoparticle-loaded objects using lead- and tin-filtered polychromatic cone-beams. Physics in Medicine and Biology, 57, N457–N467.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim, D., Jeong, Y. Y., & Jon, S. (2010). A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 4, 3689–3696.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    van Schooneveld, M. M., Cormode, D. P., Koole, R., van Wijngaarden, J. T., Calcagno, C., Skajaa, T., Hilhorst, J., 't Hart, D. C., Fayad, Z. A., Mulder, W. J. M., et al. (2010). A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media & Molecular Imaging, 5, 231–236.CrossRefGoogle Scholar
  114. 114.
    Manohar, N. (2011). Effect of source X-ray energy spectra on the detection of fluorescence photons from gold nanoparticles. Medical Physics, Georgia Institute of Technology, Atlanta, Vol. M.S., p. 38.Google Scholar
  115. 115.
    Le Duc, G., Miladi, I., Alric, C., Mowat, P., Brauer-Krisch, E., Bouchet, A., Khalil, E., Billotey, C., Janier, M., Lux, F., et al. (2011). Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano, 5, 9566–9574.PubMedCrossRefGoogle Scholar
  116. 116.
    Smith, L., Kuncic, Z., Ostrikov, K., & Kumar, S. (2012). Nanoparticles in cancer imaging and therapy. Journal of Nanomaterials, 891318, 1–7.CrossRefGoogle Scholar
  117. 117.
    Kunzel, R., Okuno, E., Levenhagen, R. S., & Umisedo, N. K. (2013). Evaluation of the X-ray absorption by gold nanoparticles solutions. Nanotechnology, 5(865283), 203.Google Scholar
  118. 118.
    Tu, S. J., Yang, P. Y., Hong, J. H., & Lo, C. J. (2013). Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiation Physics and Chemistry, 88, 14–20.CrossRefGoogle Scholar
  119. 119.
    Rivera, E. J., Tran, L. A., Hernandez-Rivera, M., Yoon, D., Mikos, A. G., Rusakova, I. A., Cheong, B. Y., Cabreira-Hansen, M. D., Willerson, J. T., Perin, E. C., et al. (2013). Bismuth@US-tubes as a potential contrast agent for X-ray imaging applications. Journal of Materials Chemistry B, 1, 4792–4800.CrossRefGoogle Scholar
  120. 120.
    Cole, L. E., Vargo-Gogola, T., & Roeder, R. K. (2014). Contrast-enhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles. ACS Nano, 8, 7486–7496.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Deyhimihaghighi, N., Mohd Noor, N., Soltani, N., Jorfi, R., Erfani Haghir, M., Adenan, M. Z., Saion, E., & Khandaker, M. U. (2014). Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding Platinum nano-particles. Journal of Physics: Conference Series, 546, 012013.Google Scholar
  122. 122.
    Xia, H. X., Yang, X. Q., Song, J. T., Chen, J., Zhang, M. Z., Yan, D. M., Zhang, L., Qin, M. Y., Bai, L. Y., Zhao, Y. D., et al. (2014). Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. Journal of Materials Chemistry B, 2, 1945–1953.CrossRefGoogle Scholar
  123. 123.
    Wathen, C. A., Caldwell, C., Chanda, N., Upendran, A., Zambre, A., Afrasiabi, Z., Chapaman, S. E., Foje, N., Leevy, W. M., & Kannan, R. (2015). Selective X-ray contrast enhancement of the spleen of living mice mediated by gold nanorods. Contrast Media & Molecular Imaging, 10, 188–193.CrossRefGoogle Scholar
  124. 124.
    Rand, D., Derdak, Z., Carlson, R., Wands, J. R., & Rose-Petruck, C. (2015). X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents. Scientific Reports, 5, 15673.Google Scholar
  125. 125.
    McQuade, C., Al Zaki, A., Desai, Y., Vido, M., Sakhuja, T., Cheng, Z. L., Hickey, R. J., Joh, D., Park, S. J., Kao, G., et al. (2015). A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small, 11, 834–843.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lv, R. C., Yang, P. P., He, F., Gai, S. L., Li, C. X., Dai, Y. L., Yang, G. X., & Lin, J. (2015). A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano, 9, 1630–1647.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Kim, T., Lee, N., Arifin, D. R., Shats, I., Janowski, M., Walczak, P., Hyeon, T., & Bulte, J. W. M. (2017). In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-lysine nanocomplexes. Advanced Functional Materials, 27, 1604213.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Duan, S., Yang, Y. J., Zhang, C. L., Zhao, N. N., & Xu, F. J. (2017). NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small, 13, 1603133.CrossRefGoogle Scholar
  130. 130.
    Wathen, C. A., Foje, N., van Avermaete, T., Miramontes, B., Chapaman, S. E., Sasser, T. A., Kannan, R., Gerstler, S., & Leevy, W. M. (2013). In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors, 13, 6957–6980.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Liu, X., Zhang, X., Zhu, M., Lin, G. H., Liu, J., Zhou, Z. F., Tian, X., & Pan, Y. (2017). PEGylated au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Applied Materials & Interfaces, 9, 279–285.CrossRefGoogle Scholar
  132. 132.
    Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10, 831–847.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Jakhmola, A., Anton, N., & Vandamme, T. F. (2012). Inorganic nanoparticles based contrast agents for X-ray computed tomography. Advanced Healthcare Materials, 1, 413–431.PubMedCrossRefGoogle Scholar
  134. 134.
    Cole, L. E., Ross, R. D., Tilley, J. M. R., Vargo-Gogola, T., & Roeder, R. K. (2015). Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine, 10, 321–341.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu, Y. L., Liu, J. H., Ai, K. L., Yuan, Q. H., & Lu, L. H. (2014). Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: Promises and prospects. Contrast Media & Molecular Imaging, 9, 26–36.CrossRefGoogle Scholar
  136. 136.
    Gao, Y. P., & Li, Y. S. (2016). Gold nanostructures for cancer imaging and therapy. In Z. Dai (Ed.), Advances in nanotheranostics I, Springer Series in Biomaterials Science and Engineering (Vol. 6, pp. 53–101). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  137. 137.
    Patel, L. N., Zaro, J. L., & Shen, W. C. (2007). Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 24, 1977–1992.PubMedCrossRefGoogle Scholar
  138. 138.
    Cesbron, Y., See, V., Free, P., Nativo, P., Shaheen, U., Rigden, D. J., Spiller, D. G., Fernig, D. G., White, M. R. H., Prior, I. A., et al. (2010). Intracellular delivery and fate of peptide-capped gold nanoparticles. Biophysical Journal, 98, 203a.CrossRefGoogle Scholar
  139. 139.
    Popovtzer, R., Agrawal, A., Kotov, N. A., Popovtzer, A., Balter, J., Carey, T. E., & Kopelman, R. (2008). Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Letters, 8, 4593–4596.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cole, L. E., Vargo-Gogola, T., & Roeder, R. K. (2014). Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials, 35, 2312–2321.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang, X. D., Wu, D., Shen, X., Chen, J., Sun, Y. M., Liu, P. X., & Liang, X. J. (2012). Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 33, 6408–6419.PubMedCrossRefGoogle Scholar
  142. 142.
    Cho, S. H. (2005). Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Medical Physics, 32, 2162–2162.CrossRefGoogle Scholar
  143. 143.
    McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an Au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lechtman, E., Chattopadhyay, N., Cai, Z., Mashouf, S., Reilly, R., & Pignol, J. P. (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Physics in Medicine and Biology, 56, 4631–4647.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Martinez-Rovira, I., & Prezado, Y. (2011). Monte Carlo dose enhancement studies in microbeam radiation therapy. Medical Physics, 38, 4430–4439.PubMedCrossRefGoogle Scholar
  147. 147.
    Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Physics in Medicine and Biology, 57, 6371–6380.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Lechtman, E., Mashouf, S., Chattopadhyay, N., Keller, B. M., Lai, P., Cai, Z., Reilly, R. M., & Pignol, J. P. (2013). A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Physics in Medicine and Biology, 58, 3075–3087.PubMedCrossRefGoogle Scholar
  149. 149.
    Amato, E., Italiano, A., Leotta, S., Pergolizzi, S., & Torrisi, L. (2013). Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Journal of X-Ray Science and Technology, 21, 237–247.PubMedGoogle Scholar
  150. 150.
    Mesbahi, A., Jamali, F., & Gharehaghaji, N. (2013). Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts: BI, 29-35(29), 3.Google Scholar
  151. 151.
    Jeynes, J. C. G., Merchant, M. J., Spindler, A., Wera, A. C., & Kirkby, K. J. (2014). Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Physics in Medicine and Biology, 59, 6431–6443.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Li, W. B., Müllner, M., Greiter, M. B., Bissardon, C., Xie, W. Z., Schlattl, H., Oeh, U., Li, J. L., & Hoeschen, C.. (2014). Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers. Medical Imaging 2014: Physics of Medical Imaging. Proceedings of SPIE, 9033, 90331K.Google Scholar
  153. 153.
    Wardlow, N., Polin, C., Villagomez-Bernabe, B., & Currell, F. (2015). A simple model to quantify radiolytic production following electron emission from heavy-atom nanoparticles irradiated in liquid suspensions. Radiation Research, 184, 518–532.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Xie, W. Z., Friedland, W., Li, W. B., Li, C. Y., Oeh, U., Qiu, R., Li, J. L., & Hoeschen, C. (2015). Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Physics in Medicine and Biology, 60, 6195–6212.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ferrero, V., Visona, G., Dalmasso, F., Gobbato, A., Cerello, P., Strigari, L., Visentin, S., & Attili, A. (2017). Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study. Medical Physics, 44, 1983–1992.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Sung, W. M., Ye, S. J., McNamara, A. L., McMahon, S. J., Hainfeld, J., Shin, J., Smilowitz, H. M., Paganetti, H., & Schuemann, J. (2017). Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 9, 5843–5853.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zabihzadeh, M., Moshirian, T., Ghorbani, M., Knaup, C., & Behrooz, M. A. (2016). A Monte Carlo study on dose enhancement by homogenous and inhomogeneous distributions of gold nanoparticles in radiotherapy with low energy X-rays. Journal of Biomedical Physics and Engineering, I–XVI.Google Scholar
  158. 158.
    Zygmanski, P., & Sajo, E. (2016). Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. The British Journal of Radiology, 89, 20150200.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Oliver, P. A. K., & Thomson, R. M. (2017). A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry. Physics in Medicine and Biology, 62, 1417–1437.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Lee, C., Cheng, N. N., Davidson, R. A., & Guo, T. (2012). Geometry enhancement of nanoscale energy deposition by X-rays. Journal of Physical Chemistry C, 116, 11292–11297.CrossRefGoogle Scholar
  161. 161.
    Ma, L., Zou, X. J., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.CrossRefGoogle Scholar
  162. 162.
    Huang, F. K., Chen, W. C., Lai, S. F., Liu, C. J., Wang, C. L., Wang, C. H., Chen, H. H., Hua, T. E., Cheng, Y. Y., Wu, M. K., et al. (2010). Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Physics in Medicine and Biology, 55, 469–482.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Zou, X. J., Yao, M. Z., Ma, L., Hossu, M., Han, X. M., Juzenas, P., & Chen, W. (2014). X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine, 9, 2339–2351.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    McQuaid, H. N., Muir, M. F., Taggart, L. E., McMahon, S. J., Coulter, J. A., Hyland, W. B., Jain, S., Butterworth, K. T., Schettino, G., Prise, K. M., et al. (2016). Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports, 6, 19442.Google Scholar
  165. 165.
    Detappe, A., Thomas, E., Tibbitt, M. W., Kunjachan, S., Zavidij, O., Parnandi, N., Reznichenko, E., Lux, F., Tillemen, O., & Berbeco, R. (2017). Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Letters, 17, 1733–1740.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Stefancikova, L., Lacombe, S., Salado, D., Porcel, E., Pagacova, E., Tillement, O., Lux, F., Depes, D., Kozubek, S., & Falk, M. (2016). Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. Journal of Nanbiotechnology, 14, 63.Google Scholar
  167. 167.
    Clement, S., Chen, W. J., Anwer, A. G., & Goldys, E. M. (2017). Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Microchimica Acta, 184, 1765–1771.CrossRefGoogle Scholar
  168. 168.
    Ghaemi, B., Mashinchian, O., Mousavi, T., Karimi, R., Kharrazi, S., & Amani, A. (2016). Harnessing the cancer radiation therapy by lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Applied Materials & Interfaces, 8, 3123–3134.CrossRefGoogle Scholar
  169. 169.
    Khoei, S., Mahdavi, S. R., Fakhimikabir, H., Shakeri-Zadeh, A., & Hashemian, A. (2014). The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. International Journal of Radiation Biology, 90, 351–356.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Brown, R., Tehei, M., Oktaria, S., Briggs, A., Stewart, C., Konstantinov, K., Rosenfeld, A., Corde, S., & Lerch, M. (2014). High-Z nanostructured ceramics in radiotherapy: First evidence of Ta2O5-induced dose enhancement on radioresistant cancer cells in an MV photon field. Particle and Particle Systems Characterization, 31, 500–505.CrossRefGoogle Scholar
  171. 171.
    Kumar, R., Korideck, H., Ngwa, W., Berbeco, R. I., Makrigiorgos, G. M., & Sridhar, S. (2013). Third generation gold nanoplatform optimized for radiation therapy. Translational Cancer Research, 2, 228–239.Google Scholar
  172. 172.
    Yousef, I., Seksek, O., Gil, S., Prezado, Y., Sule-Susoe, J., & Martinez-Rovira, I. (2016). Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: First FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst, 141, 2238–2249.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Takahashi, J., & Misawa, M. (2007). Analysis of potential radiosensitizing materials for X-ray-induced photodyanmic therapy. NanoBiotechnology, 3, 116–126 116.CrossRefGoogle Scholar
  174. 174.
    Ngwa, W., Korideck, H., Kassis, A. I., Kumar, R., Sridhar, S., Makrigiorgos, G. M., & Cormack, R. A. (2013). In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine-Nanotechnology, 9, 25–27.CrossRefGoogle Scholar
  175. 175.
    Bao, Z. R., He, M. Y., Quan, H., Jiang, D. Z., Zheng, Y. H., Qin, W. J., Zhou, Y. F., Ren, F., Guo, M. X., & Jiang, C. Z. (2016). FePt nanoparticles: A novel nanoprobe for enhanced HeLa cells sensitivity to chemoradiotherapy. RSC Advances, 6, 35124–35134.CrossRefGoogle Scholar
  176. 176.
    Kraščākovā, S., Giuliani, A., Lacerda, S., Pallier, A., Mercere, P., Toth, E., & Refregiers, M. (2015). X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Research, 8, 2373–2379.CrossRefGoogle Scholar
  177. 177.
    Rossi, F., Bedogni, E., Bigi, F., Rimoldi, T., Cristofolini, L., Pinelli, S., Alinovi, R., Negri, M., Dhanabalan, S. C., Attolini, G., et al. (2015). Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Scientific Reports, 5, 7606.Google Scholar
  178. 178.
    Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.Google Scholar
  179. 179.
    Huang, C. W., Kearney, V., Moeendarbari, S., Jiang, R. Q., Christensen, P., Tekade, R., Sun, X. K., Mao, W. H., & Hao, Y. W. (2015). Hollow gold nanoparticles as biocompatible radiosensitizer: An in vitro proof of concept study. Journal of Nano Research, 32, 106–U140.CrossRefGoogle Scholar
  180. 180.
    Jiang, X. Y., Du, B. J., Yu, M. X., Jia, X., & Zheng, J. (2016). Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles. Journal of Innovative Optical Health Sciences, 9, 1642003.CrossRefGoogle Scholar
  181. 181.
    Zhang, X. D., Guo, M. L., Wu, H. Y., Sun, Y. M., Ding, Y. Q., Feng, X., & Zhang, L. A. (2009). Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. International Journal of Nanomedicine, 4, 165–173.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Levy, L., Pottier, A., Rouet, A., Marill, J., Devaux, C., & Germain, M. (2009). Inorganic nanoparticles of high density to destroy cells in-vivo, WO2009 147214 A1.Google Scholar
  183. 183.
    Geng, F., Song, K., Xing, J. Z., Yuan, C. Z., Yan, S., Yang, Q. F., Chen, J., & Kong, B. H. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22(285101), 1–8.Google Scholar
  184. 184.
    Yang, C., Neshatian, M., van Prooijen, M., & Chithrani, D. B. (2014). Cancer nanotechnology: Enhanced therapeutic response using peptide-modified gold nanoparticles. Journal of Nanoscience and Nanotechnology, 14, 4813–4819.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Hossain, M., Luo, Y., Sun, Z. Y., Wang, C. M., Zhang, M. H., Fu, H. Y., Qiao, Y., & Su, M. (2012). X-ray enabled detection and eradication of circulating tumor cells with nanoparticles. Biosensors & Bioelectronics, 38, 348–354.CrossRefGoogle Scholar
  187. 187.
    Detappe, A., Rottmann, J., Kunjachan, S., Tillement, O., & Berbeco, R. (2015). Theranostic gadolinium-based AGuIX nanoparticles for MRI-guided radiation therapy. Medical Physics, 42, 3566–3566.CrossRefGoogle Scholar
  188. 188.
    Wang, J. P., Pang, X. J., Tan, X. X., Song, Y. L., Liu, L., You, Q., Sun, Q., Tan, F. P., & Li, N. (2017). A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS2 nanodots. Nanoscale, 9, 5551–5564.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. The Journal of Pharmacy and Pharmacology, 60, 977–985.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Jaboin, J. I., Fu, A., Hariri, G., Han, Z., & Hallahan, D. (2007). Novel radiation-guided nanoparticle drug delivery system for prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 69, S111–S111.CrossRefGoogle Scholar
  191. 191.
    Chang, M. Y., Shiau, A. L., Chen, Y. H., Chang, C. J., Chen, H. H. W., & Wu, C. L. (2008). Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Science, 99, 1479–1484.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Popovtzer, A., Mizrachi, A., Motiei, M., Bragilovski, D., Lubimov, L., Levi, M., Hilly, O., Ben-Aharon, I., & Popovtzer, R. (2016). Actively targeted gold nanoparticles as novel radiosensitizer agents: An in vivo head and neck cancer model. Nanoscale, 8, 2678–2685.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Tseng, S. J., Chien, C. C., Liao, Z. X., Chen, H. H., Kang, Y. D., Wang, C. L., Hwu, Y., & Margaritondo, G. (2012). Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter, 8, 1420–1427.CrossRefGoogle Scholar
  194. 194.
    Anijdan, S. H. M., Mahdavi, S. R., Shirazi, A., Zarrinfard, M. A., & Hajati, J. (2013). Megavoltage X-ray dose enhancement with gold nanoparticles in tumor bearing mice. International Journal of Molecular and Cellular Medicine (IJMCM), 3, 118–124.Google Scholar
  195. 195.
    Krishnan, S., Diagaradjane, P., Goudrich, G. P., & Payne, J. D. (2013). Enhancement of radiation therapy by targeted high-Z nanoparticles. US 2013/0225901 A1.Google Scholar
  196. 196.
    Kunjachan, S., Detappe, A., Kumar, R., Ireland, T., Cameron, L., Biancur, D. E., Motto-Ros, V., Sancey, L., Sridhar, S., Makrigiorgos, G. M., et al. (2015). Nanoparticle mediated tumor vascular disruption: A novel strategy in radiation therapy. Nano Letters, 15, 7488–7496.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Fan, W. P., Bu, W. B., Zhang, Z., Shen, B., Zhang, H., He, Q. J., Ni, D. L., Cui, Z. W., Zhao, K. L., Bu, J. W., et al. (2015). X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angewandte Chemie, International Edition, 54, 14026–14030.CrossRefGoogle Scholar
  198. 198.
    Chen, N., Yang, W. T., Bao, Y., Xu, H. L., Qin, S. B., & Tu, Y. (2015). BSA capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Advances, 5, 40514–40520.CrossRefGoogle Scholar
  199. 199.
    Chen, H. M., Wang, G. D., Chuang, Y. J., Zhen, Z. P., Chen, X. Y., Biddinger, P., Hao, Z. L., Liu, F., Shen, B. Z., Pan, Z. W., et al. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249–2256.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., et al. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports, 5.Google Scholar
  201. 201.
    Yi, X., Chen, L., Zhong, X. Y., Gao, R. L., Qian, Y. T., Wu, F., Song, G. S., Chai, Z. F., Liu, Z., & Yang, K. (2016). Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Research, 9, 3267–3278.CrossRefGoogle Scholar
  202. 202.
    Zhao, N., Yang, Z. R., Li, B. X., Meng, J., Shi, Z. L., Li, P., & Fu, S. (2016). RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. International Journal of Nanomedicine, 11, 5595–5610.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Li, M. F., Zhao, Q., Yi, X., Zhong, X. Y., Song, G. S., Chai, Z. F., Liu, Z. A., & Yang, K. (2016). Au@MnS@ZnS core/shell/shell nanoparticles for magnetic resonance imaging and enhanced cancer radiation therapy. ACS Applied Materials & Interfaces, 8, 9557–9564.CrossRefGoogle Scholar
  204. 204.
    Liu, J. J., Chen, Q., Zhu, W. W., Yi, X., Yang, Y., Dong, Z. L., & Liu, Z. (2017). Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Advanced Functional Materials, 27, 1605926.CrossRefGoogle Scholar
  205. 205.
    Smilowitz, H. M., Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D. N., & Kalef-Ezra, J. A. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine and Biology, 55, 3045–3059.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159–1166.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Alric, C., Serduc, R., Mandon, C., Taleb, J., Le Duc, G., Le Meur-Herland, A., Billotey, C., Perriat, P., Roux, S., & Tillement, O. (2008). Gold nanoparticles designed for combining dual modality imaging and radiotherapy. Gold Bulletin, 41, 90–97.CrossRefGoogle Scholar
  209. 209.
    Hebert, E. M., Debouttiere, P. J., Lepage, M., Sanche, L., & Hunting, D. J. (2010). Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: Radiosensitisation studies in vivo and in vitro. International Journal of Radiation Biology, 86, 692–700.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Townley, H. E., Rapa, E., Wakefield, G., & Dobson, P. J. (2012). Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine-Nanotechnology, 8, 526–536.CrossRefGoogle Scholar
  211. 211.
    Townley, H. E., Kim, J., & Dobson, P. J. (2012). In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale, 4, 5043–5050.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Liu, P. D., Jin, H. Z., Guo, Z. R., Ma, J., Zhao, J., Li, D. D., Wu, H., & Gu, N. (2016). Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine, 11, 5003–5013.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Jain, S., Hirst, D. G., & O'Sullivan, J. M. (2012). Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology, 85, 101–113.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Kotb, S., Detappe, A., Lux, F., Appaix, F., Barbier, E. L., Tran, V. L., Plissonneau, M., Gehan, H., Lefranc, F., Rodriguez-Lafrasse, C., et al. (2016). Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: Proof of concept before phase I trial. Theranostics, 6, 418–427.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Rancoule, C., Magne, N., Vallard, A., Guy, J. B., Rodriguez-Lafrasse, C., Deutsch, E., & Chargari, C. (2016). Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Letters, 375, 256–262.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Norman, A., & Iwamoto, K. S. (1991). Therapy X-ray scanner, 5,008,907.Google Scholar
  218. 218.
    Uesaka, M., Mizumo, K., Sakumi, A., Meiling, J., Yusa, N., Nishiyama, N., & Nakagawa, K. (2007). Pinpoint KEV/MEV X-ray sources for X-ray drug delivery system. PAC, IEEE, Albuquerque, Vol. THPMN035, p. 2793.Google Scholar
  219. 219.
    Montenegro, M., Nahar, S. N., Pradhan, A. K., Huang, K., & Yu, Y. (2009). Monte Carlo simulations and atomic calculations for auger processes in biomedical nanotheranostics. The Journal of Physical Chemistry. A, 113, 12364–12369.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Zhang, E., Ntumba, K., & Nadeau, J. (2010). Enhanced cytotoxicity of doxorubicin conjugated to ultrasmall au nanoparticles. Nanotechnology, 3, 316–319.Google Scholar
  221. 221.
    Davidson, R. A., & Guo, T. (2016). Nanoparticle-assisted scanning focusing X-ray therapy with needle beam X rays. Radiation Research, 185, 87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Lukianova-Hleb, E. Y., Ren, X. Y., Sawant, R. R., Wu, X. W., Torchilin, V. P., & Lapotko, D. O. (2014). On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nature Medicine, 20, 778–784.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chemical Science, 6, 1747–1753.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Ni, D. L., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Intranuclear biophotonics by smart design of nuclear-targeting photo−/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 69, 89–98.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Koger, B., & Kirkby, C. (2016). Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Physics in Medicine and Biology, 61, 8839–8853.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Morita, K., Miyazaki, S., Numako, C., Ikeno, S., Sasaki, R., Nishimura, Y., Ogino, C., & Kondo, A. (2016). Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer. Free Radical Research, 50, 1319–1328.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Moeendarbari, S., Tekade, R., Mulgaonkar, A., Christensen, P., Ramezani, S., Hassan, G., Jiang, R., Oz, O. K., Hao, Y. W., & Sun, X. K. (2016). Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Scientific Reports, 6, 20614.Google Scholar
  228. 228.
    Chen, Y. Y., Song, G. S., Dong, Z. L., Yi, X., Chao, Y., Liang, C., Yang, K., Cheng, L., & Liu, Z. (2017). Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small, 13, 1602869.CrossRefGoogle Scholar
  229. 229.
    Chevillard, S., Vielh, P., Campana, F., Bastian, G., & Coppey, J. (1992). Cytotoxic effects and pharmacokinetic analysis of combined Adriamycin and X-ray treatments in human organotypic cell-cultures. Anti-Cancer Drugs, 3, 133–137.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Shibamoto, Y., Zhou, L., Hatta, H., Mori, M., & Nishimoto, S. (2000). A novel class of antitumor prodrug, 1-(2'-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation. Japanese Journal of Cancer Research, 91, 433–438.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Mueller, A., Bondurant, B., & O'Brien, D. F. (2000). Visible-light-stimulated destabilization of PEG-liposomes. Macromolecules, 33, 4799–4804.CrossRefGoogle Scholar
  232. 232.
    Spratt, T., Bondurant, B., & O'Brien, D. F. (2003). Rapid release of liposomal contents upon photoinitiated destabilization with UV exposure. Biochimica et Biophysica Acta-Biomembranes, 1611, 35–43.CrossRefGoogle Scholar
  233. 233.
    Lopez, E., Obrien, D. F., & Whitesides, T. H. (1982). Structural effects on the photo-polymerization of bilayer-membranes. Journal of the American Chemical Society, 104, 305–307.CrossRefGoogle Scholar
  234. 234.
    Yavlovich, A., Smith, B., Gupta, K., Blumenthal, R., & Puri, A. (2010). Light-sensitive lipid-based nanoparticles for drug delivery: Design principles and future considerations for biological applications. Molecular Membrane Biology, 27, 364–381.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Puri, A., & Blumenthal, R. (2011). Polymeric lipid assemblies as novel theranostic tools. Accounts of Chemical Research, 44, 1071–1079.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Faisant, N., Siepmann, J., Oury, P., Laffineur, V., Bruna, E., Haffner, J., & Benoit, J. P. (2002). The effect of gamma-irradiation on drug release from bioerodible microparticles: A quantitative treatment. International Journal of Pharmaceutics, 242, 281–284.PubMedCrossRefGoogle Scholar
  237. 237.
    Roullin, V. G., Mege, M., Lemaire, L., Cueyssac, J. P., Venier-Julienne, M. C., Menei, P., Gamelin, E., & Benoit, J. P. (2004). Influence of 5-fluorouracil-loaded microsphere formulation on efficient rat glioma radiosensitization. Pharmaceutical Research, 21, 1558–1563.PubMedCrossRefGoogle Scholar
  238. 238.
    Fologea, E., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlling drug release from a liposome carrier. US patent application number: US20120041357A1; priority date: Mar. 31, 2009. Google Scholar
  239. 239.
    Fologea, D., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlled drug release from a liposome carrier, United State Patent: US 8808733 B2. Issued date: Aug. 19, 2014. Google Scholar
  240. 240.
    Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 60, 1600–1614.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Mutation Research, Reviews in Mutation Research, 704, 123–131.CrossRefGoogle Scholar
  242. 242.
    Jelveh, S., & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancer, 3, 1081–1110.CrossRefGoogle Scholar
  243. 243.
    Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Coulter, J. A., Butterworth, K. T., & Jain, S. (2015). Prostate cancer radiotherapy: Potential applications of metal nanoparticles for imaging and therapy. The British Journal of Radiology, 88, 20150256.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Dorsey, J. F., Sun, L., Joh, D. Y., Witztum, A., Al Zaki, A., Kao, G. D., Alonso-Basanta, M., Avery, S., Tsourkas, A., & Hahn, S. M. (2013). Gold nanoparticles in radiation research: Potential applications for imaging and radiosensitization. Translational Cancer Research, 2, 280–291.PubMedPubMedCentralGoogle Scholar
  246. 246.
    Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Translational Cancer Research, 2, 330–342.Google Scholar
  247. 247.
    Su, X. Y., Liu, P. D., Wu, H., & Gu, N. (2014). Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biology & Medicine, 11, 86–91.Google Scholar
  248. 248.
    Retif, P., Pinel, S., Toussaint, M., Frochot, C., Chouikrat, R., Bastogne, T., & Barberi-Heyob, M. (2015). Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 5, 1030–1045.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Brun, E., & Sicard-Roselli, C. (2016). Actual questions raised by nanoparticle radiosensitization. Radiation Physics and Chemistry, 128, 134–142.CrossRefGoogle Scholar
  250. 250.
    Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov'yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnology, 7, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Rosa, S., Connolly, C., Schettino, G., Butterworth, K. T., & Prise, K. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1).Google Scholar
  252. 252.
    Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Cho, S. H., & Krishnan, S. (2013). Cancer nanotechnology: Principles and applications of radiation oncology, W. R. Hendee (p. 284). Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations