X-Ray Nanochemistry and Its Applications in Biology

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


This chapter reviews the work performed in the area of damaging biomolecules and non-cancerous cells using nanomaterials under X-ray irradiation. Biomolecules include proteins and nucleotides, and cells are both eukaryotic cells and bacteria. Summary of the enhancement is given at the end of this chapter.


Damage to mitochondria Damage to nucleotides Damage to proteins Oxidative stress 


  1. 1.
    Brun, E., Duchambon, P., Blouquit, Y., Keller, G., Sanche, L., & Sicard-Roselli, C. (2009). Gold nanoparticles enhance the X-ray-induced degradation of human centrin 2 protein. Radiation Physics and Chemistry, 78, 177–183.CrossRefGoogle Scholar
  2. 2.
    von Sonntag, C. (1987). The chemical basis for radiation biology. London: Taylor and Francis.Google Scholar
  3. 3.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  4. 4.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  5. 5.
    Butterworth, K. T., Wyer, J. A., Brennan-Fournet, M., Latimer, C. J., Shah, M. B., Currell, F. J., & Hirst, D. G. (2008). Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiation Research, 170, 381–387.CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng, Y., Cloutier, P., Hunting, D. J., & Sanche, L. (2008). Radiosensitization by gold nanoparticles: Comparison of DNA damage induced by low and high-energy electrons. Journal of Biomedical Nanotechnology, 4, 469–473.CrossRefGoogle Scholar
  7. 7.
    Zheng, Y., & Sanche, L. (2009). Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiation Research, 172, 114–119.CrossRefPubMedGoogle Scholar
  8. 8.
    Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., & Lacombe, S. (2010). Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology, 21, 085103.CrossRefGoogle Scholar
  9. 9.
    Porcel, E., Kobayashi, K., Usami, N., Remita, H., Le Sech, C., & Lacombe, S. (2011). Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. Journal of Physics: Conference Series, 261, 012004.Google Scholar
  10. 10.
    Xiao, F. X., Zheng, Y., Cloutier, P., He, Y. H., Hunting, D., & Sanche, L. (2011). On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology, 22, 465101.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou, H. Y., Zhang, Y., Su, G. X., Zhai, S. M., & Yan, B. (2013). Enhanced cancer cell killing by a targeting gold nanoconstruct with doxorubicin payload under X-ray irradiation. RSC Advances, 3, 21596–21603.CrossRefGoogle Scholar
  13. 13.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yao, X. B., Huang, C. N., Chen, X. P., Zheng, Y., & Sanche, L. (2015). Chemical radiosensitivity of DNA induced by gold nanoparticles. Journal of Biomedical Nanotechnology, 11, 478–485.CrossRefPubMedGoogle Scholar
  16. 16.
    He, C., & Chow, J. C. L. (2016). Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. Bioengineering, 3, 352–361.CrossRefGoogle Scholar
  17. 17.
    Kotb, S., Detappe, A., Lux, F., Appaix, F., Barbier, E. L., Tran, V. L., Plissonneau, M., Gehan, H., Lefranc, F., Rodriguez-Lafrasse, C., et al. (2016). Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: Proof of concept before phase I trial. Theranostics, 6, 418–427.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guo, T. Nanoparticle enhanced X-ray therapy. In ACS annual meeting, Philadelphia, August 2004.Google Scholar
  19. 19.
    Brun, E., Sanche, L., & Sicard-Roselli, C. (2009). Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface B, 72, 128–134.CrossRefGoogle Scholar
  20. 20.
    Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M. A., & Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science, 287, 1658–1660.CrossRefPubMedGoogle Scholar
  21. 21.
    Martin, F., Burrow, P. D., Cai, Z. L., Cloutier, P., Hunting, D., & Sanche, L. (2004). DNA strand breaks induced by 0-4 eV electrons: The role of shape resonances. Physical Review Letters, 93, 068101.CrossRefPubMedGoogle Scholar
  22. 22.
    Cai, Z. L., Cloutier, P., Hunting, D., & Sanche, U. (2005). Comparison between x-ray photon and secondary electron damage to DNA in vacuum. The Journal of Physical Chemistry. B, 109, 4796–4800.CrossRefPubMedGoogle Scholar
  23. 23.
    Li, Z. J., Cloutier, P., Sanche, L., & Wagner, J. R. (2010). Low-energy electron-induced DNA damage: Effect of base sequence in oligonucleotide trimers. Journal of the American Chemical Society, 132, 5422–5427.CrossRefPubMedGoogle Scholar
  24. 24.
    Alizadeh, E., Cloutier, P., Hunting, D., & Sanche, L. (2011). Soft X-ray and low energy electron-induced damage to DNA under N-2 and O-2 atmospheres. The Journal of Physical Chemistry. B, 115, 4523–4531.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nagai, K., Carter, B. J., Xu, J. W., & Hecht, S. M. (1991). DNA cleavage by oxygen radicals produced in the absence of metal-ions or light. Journal of the American Chemical Society, 113, 5099–5100.CrossRefGoogle Scholar
  26. 26.
    Alizadeh, E., & Sanche, L. (2012). Precursors of solvated electrons in radiobiological physics and chemistry. Chemical Reviews, 112, 5578–5602.CrossRefPubMedGoogle Scholar
  27. 27.
    Alizadeh, E., Orlando, T. M., & Sanche, L. (2015). Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA. Annual Review of Physical Chemistry, 66, 379–398.CrossRefPubMedGoogle Scholar
  28. 28.
    Alizadeh, E., Massey, S., Sanche, L., & Rowntree, P. A. (2016). Low-energy electron-induced dissociation in condensed-phase L-cysteine II: A comparative study on anion desorption from chemisorbed and physisorbed films. European Physical Journal D, 70, 75.Google Scholar
  29. 29.
    Sanche, L. (2016). Interaction of low energy electrons with DNA: Applications to cancer radiation therapy. Radiation Physics and Chemistry, 128, 36–43.CrossRefGoogle Scholar
  30. 30.
    Taggart, L. E., Mcmahon, S. J., Currell, F. J., Prise, K. M., & Butterworth, K. T. (2014). The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnology, 5(12), 1.Google Scholar
  31. 31.
    Fang, X., Wang, Y. L., Ma, X. C., Li, Y. Y., Zhang, Z. L., Xiao, Z. S., Liu, L. J., Gao, X. Y., & Liu, J. (2017). Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. Journal of Materials Chemistry B, 5, 4190–4197.CrossRefGoogle Scholar
  32. 32.
    McMahon, S. J., McNamara, A. L., Schuemann, J., Prise, K. M., & Paganetti, H. (2016). Mitochondria as target for radiosensitization by gold nanoparticles. Journal of Physics: Conference Series, 777, 012008.Google Scholar
  33. 33.
    Hei, T. K. (2016). Radiation bystander effects. Environmental and Molecular Mutagenesis, 57, S52–S52. 47th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society. Kansas City, MO. SEP 24–28.Google Scholar
  34. 34.
    Cohen, B. L. (1999). Validity of the linear no-threshold theory of radiation carcinogenesis at low doses. Journal of British Nuclear Energy, 38, 157–166.Google Scholar
  35. 35.
    Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.CrossRefPubMedGoogle Scholar
  36. 36.
    Kong, T., Zeng, J., Wang, X. P., Yang, X. Y., Yang, J., McQuarrie, S., McEwan, A., Roa, W., Chen, J., & Xing, J. Z. (2008). Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 4, 1537–1543.CrossRefPubMedGoogle Scholar
  37. 37.
    Rahman, W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P., Wong, C., Davidson, R., & Geso, M. (2009). Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine Nanotechnology, 5, 136–142.CrossRefGoogle Scholar
  38. 38.
    Butterworth, K. T., Coulter, J. A., Jain, S., Forker, J., McMahon, S. J., Schettino, G., Prise, K. M., Currell, F. J., & Hirst, D. G. (2010). Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology, 21(295101), 1–9.Google Scholar
  39. 39.
    Rahman, W.N., Wong, C.J., Yagic, N., Davidson, R., & Geso, M. (2010). Dosimetry And Its Enhancement Using Gold Nanoparticles In Synchrotron Based Microbeam And Stereotactic Radiosurgery. AIP Conference Proceedings, 1266, 107–110.Google Scholar
  40. 40.
    Rahman, W. N., Corde, S., Yagi, N., Aziz, S. A. A., Annabell, N., & Geso, M. (2014). Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine, 9, 2459–2467.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kunjachan, S., Detappe, A., Kumar, R., Ireland, T., Cameron, L., Biancur, D. E., Motto-Ros, V., Sancey, L., Sridhar, S., Makrigiorgos, G. M., et al. (2015). Nanoparticle mediated tumor vascular disruption: A novel strategy in radiation therapy. Nano Letters, 15, 7488–7496.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive Diselenide block co-polymer Micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.CrossRefPubMedGoogle Scholar
  43. 43.
    Simon-Deckers, A., Brun, E., Gouget, B., Carriere, M., & Sicard-Roselli, C. (2008). Impact of gold nanoparticles combined to X-ray irradiation on bacteria. Gold Bulletin, 41, 187–194.CrossRefGoogle Scholar
  44. 44.
    Harris, D. R., Pollock, S. V., Wood, E. A., Goiffon, R. J., Klingele, A. J., Cabot, E. L., Schackwitz, W., Martin, J., Eggington, J., Durfee, T. J., et al. (2009). Directed evolution of ionizing radiation resistance in Escherichia coli. Journal of Bacteriology, 191, 5240–5252.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kamiar, A., Ghotalou, R., & Preparation, H. V. (2013). Physicochemical characterization and performance evaluation of gold nanoparticles in radiotherapy. Advanced Pharmaceutical Bulletin, 3, 425–428.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Luo, Y., Hossain, M., Wang, C. M., Qiao, Y., An, J. C., Ma, L. Y., & Su, M. (2013). Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale, 5, 687–694.CrossRefPubMedGoogle Scholar
  47. 47.
    Li, Y. Y., Wang, Z. L., Liu, X. X., Tang, J. Y., Peng, B., & Wei, Y. Q. (2016). X-ray irradiated vaccine confers protection against pneumonia caused by pseudomonas Aeruginosa. Scientific Reports UK, 6, 18823.Google Scholar
  48. 48.
    Pan, C. L., Chen, M. H., Tung, F. I., & Liu, T. Y. (2017). A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomaterialia, 47, 159–169.CrossRefPubMedGoogle Scholar
  49. 49.
    Rosa, S., Connolly, C., Schettino, G., Butterworth, K. T., & Prise, K. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1), 2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations