Advertisement

Techniques and Instruments for X-Ray Nanochemistry

  • Ting Guo
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Techniques and Instruments used in the measurements of enhancement of X-ray effects by nanomaterials are described in this chapter. These measurements usually involve chemical and biological reactions because direct measurements of the yield of electrons in solutions using X-ray photoelectron spectroscopy are not yet available. These reactions are discussed in Chapters 2 to 5 as well as in Chapters 8 to 11, and will only be cursorily discussed here.

Keywords

Enhancement measurements Animal models DNA damage or strand breaks and electrophoresis Fluorescence Surface-enhanced Raman spectroscopy (SERS) Biology Nuclear magnetic resonance (NMR) Magnetic resonance imaging (MRI) Electron paramagnetic resonance (EPR) spectroscopy  UV-Vis spectroscopy Electron and X-ray photoelectron spectroscopy (XPS) X-ray sources and instrumentation In situ detection 

References

  1. 1.
    Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray Nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Manohar, N., Reynoso, F., & Cho, S. (2012). Feasibility of direct L-Shell fluorescence imaging of gold nanoparticles using a Benchtop X-ray source. Medical Physics, 39, 3987–3988.CrossRefGoogle Scholar
  4. 4.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.CrossRefPubMedGoogle Scholar
  5. 5.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  6. 6.
    McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.CrossRefPubMedGoogle Scholar
  7. 7.
    Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.CrossRefPubMedGoogle Scholar
  8. 8.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  9. 9.
    Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine Nanotechnology, 7, 604–614.CrossRefGoogle Scholar
  10. 10.
    Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by Nanomaterials under X-ray irradiation. Journal of the Chemical Society, Communications, 2012(134), 1950–1953.Google Scholar
  11. 11.
    Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between Nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.CrossRefGoogle Scholar
  12. 12.
    Makrigiorgos, G. M., Baranowskakortylewicz, J., Bump, E., Sahu, S. K., Berman, R. M., & Kassis, A. I. (1993). A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of Coumarin. International Journal of Radiation Biology, 63, 445–458.CrossRefPubMedGoogle Scholar
  13. 13.
    Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.CrossRefPubMedGoogle Scholar
  14. 14.
    Cohn, C. A., Pedigo, C. E., Hylton, S. N., Simon, S. R., & Schoonen, M. A. A. (2009). Evaluating the use of 3 ′-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions. Geochemical Transactions, 10, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jeon, J. K., Han, S. M., & Kim, J. K. (2016). Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe. Journal of Synchrotron Radiation, 23, 1191–1196.CrossRefPubMedGoogle Scholar
  16. 16.
    Musat, R., Moreau, S., Poidevin, F., Mathon, M. H., Pommeret, S., & Renault, J. P. (2010). Radiolysis of water in nanoporous gold. Physical Chemistry Chemical Physics, 12, 12868–12874.CrossRefPubMedGoogle Scholar
  17. 17.
    Davidson, R. A., & Guo, T. (2012). An example of X-ray Nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.CrossRefGoogle Scholar
  18. 18.
    Subiel, A., Ashmore, R., & Schettino, G. (2016). Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles. Theranostics, 6, 1651–1671.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sahbani, S. K., Cloutier, P., Bass, A. D., Hunting, D. J., & Sanche, L. (2015). Electron resonance decay into a biological function: Decrease in viability of E-coli transformed by plasmid DNA irradiated with 0.5-18 eV electrons. Journal of Physical Chemistry Letters, 6, 3911–3914.CrossRefGoogle Scholar
  20. 20.
    Marques, T., Schwarcke, M., Garrido, C., Zucolotto, O. B., & Nicolucci, P. (2010). Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. Journal of Physics: Conference Series, 250, 012084.Google Scholar
  21. 21.
    N Deyhimihaghighi, N., Mohd Noor, N., Soltani, N., Jorfi, R., Erfani Haghir, M., Adenan, M. Z., Saion, E., & Khandaker, M. U. (2014). Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding platinum nano- particles. Journal of Physics: Conference Series, 546, 012013.Google Scholar
  22. 22.
    Sabbaghizadeh, R., Shamsudin, R., Deyhimihaghighi, N., & Sedghi, A. (2017). Enhancement of dose response and nuclear magnetic resonance image of PAGAT polymer gel dosimeter by adding silver nanoparticles. PLoS One, 12, e0168737.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. The Journal of Physical Chemistry. A, 120, 2815–2823.CrossRefPubMedGoogle Scholar
  24. 24.
    Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine Nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.CrossRefGoogle Scholar
  25. 25.
    Zhang, Z. Y., Berg, A., Levanon, H., Fessenden, R. W., & Meisel, D. (2003). On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 125, 7959–7963.CrossRefPubMedGoogle Scholar
  26. 26.
    Bacic, G., Spasojevic, I., Secerov, B., & Mojovic, M. (2008). Spin-trapping of oxygen free radicals in chemical and biological systems: New traps, radicals and possibilities. Spectrochimica Acta A, 69, 1354–1366.CrossRefGoogle Scholar
  27. 27.
    Spasojevic, I. (2010). Electron paramagnetic resonance – a powerful tool of medical biochemistry in discovering mechanisms of disease and treatment prospects. Journal of Medical Biochemistry, 29, 175–188.CrossRefGoogle Scholar
  28. 28.
    He, W. W., Liu, Y. T., Wamer, W. G., & Yin, J. J. (2014). Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis, 22, 49–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Abbas, K., Hardy, M., Poulhes, F., Karoui, H., Tordo, P., Ouari, O., & Peyrot, F. (2014). Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps. Free Radical Biology & Medicine, 71, 281–290.CrossRefGoogle Scholar
  30. 30.
    Wen, T., He, W. W., Chong, Y., Liu, Y., Yin, J. J., & Wu, X. C. (2015). Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: Implications for biomedical applications. Physical Chemistry Chemical Physics, 17, 24937–24943.CrossRefPubMedGoogle Scholar
  31. 31.
    Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.CrossRefPubMedGoogle Scholar
  32. 32.
    Casta, R., Champeaux, J. P., Sence, M., Moretto-Capelle, P., Cafarelli, P., Amsellem, A., & Sicard-Roselli, C. (2014). Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation: Experiment and simulations. Journal of Nanoparticle Research, 16, 2348.CrossRefGoogle Scholar
  33. 33.
    Klyachko, D. V., Huels, M. A., & Sanche, L. (1999). Halogen anion formation in 5-halouracil films: X rays compared to subionization electrons. Radiation Research, 151, 177–187.CrossRefPubMedGoogle Scholar
  34. 34.
    Cai, Z. L., Cloutier, P., Hunting, D., & Sanche, U. (2005). Comparison between x-ray photon and secondary electron damage to DNA in vacuum. The Journal of Physical Chemistry. B, 109, 4796–4800.CrossRefPubMedGoogle Scholar
  35. 35.
    Poludniowski, G., Landry, G., DeBlois, F., Evans, P. M., & Verhaegen, F. (2009). SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes. Physics in Medicine and Biology, 54, N433–N438.CrossRefPubMedGoogle Scholar
  36. 36.
    Poludniowski, G. G., & Evans, P. M. (2007). Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets. Medical Physics, 34, 2164–2174.CrossRefPubMedGoogle Scholar
  37. 37.
    Poludniowski, G. G. (2007). Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets. Medical Physics, 34, 2175–2186.CrossRefPubMedGoogle Scholar
  38. 38.
    Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry C, 119, 19513–19519.CrossRefGoogle Scholar
  39. 39.
    Uesaka, M., Mizumo, K., Sakumi, A., Meiling, J., Yusa, N., Nishiyama, N., & Nakagawa, K. (2007). Pinpoint KEV/MEV X-ray sources for X-ray drug delivery system. In PAC (Vol. THPMN035, p. 2793). Albuquerque: IEEE.Google Scholar
  40. 40.
    Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.CrossRefPubMedGoogle Scholar
  41. 41.
    Tsai, H. E., Wang, X. M., Shaw, J. M., Li, Z. Y., Arefiev, A. V., Zhang, X., Zgadzaj, R., Henderson, W., Khudik, V., Shvets, G., et al. (2015). Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror. Physics of Plasmas, 22, 023106.CrossRefGoogle Scholar
  42. 42.
    Davidson, R. A., & Guo, T. (2016). Nanoparticle-assisted scanning focusing X-ray therapy with needle beam X rays. Radiation Research, 185, 87–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive Diselenide block co-polymer Micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.CrossRefPubMedGoogle Scholar
  44. 44.
    Reynoso, F. J., Manohar, N., Krishnan, S., & Cho, S. H. (2014). Design of an Yb-169 source optimized for gold nanoparticleaided radiation therapy. Medical Physics, 41(10), 101709.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations