Advertisement

Nanomaterials for X-Ray Nanochemistry

  • Ting Guo
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This chapter discusses several topics related to the nanomaterials used in X-ray nanochemistry. The first topic is nanomaterials employed in enhancement measurements. Nanomaterials are discussed based on their size, shape, aggregation, and complexity. Surfactants and surface reactions related to surfactants on the surface of nanomaterial is discussed as the second topic. Three categories of reactions are proposed and described, and at least three types of reactions are associated with the first category of reactions linking surfactants to nanomaterials. Nanomaterials characterization methods are briefly discussed.

Keywords

Characterization of nanomaterials Conjugation Ligand stability Nanomaterials for enhancement Nonspherical nanoparticles Properties of nanomaterials Spherical nanoparticles Surfactants Synthesis of nanomaterials 

References

  1. 1.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  2. 2.
    Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-Derivatised gold nanoparticles in a 2-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 0, 801–802.CrossRefGoogle Scholar
  3. 3.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.CrossRefPubMedGoogle Scholar
  4. 4.
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.CrossRefPubMedGoogle Scholar
  5. 5.
    Hainfeld, J. F., Smilowitz, H. M., O’Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine, 8, 1601–1609.CrossRefPubMedGoogle Scholar
  6. 6.
    Ozin, G. A., & Arsenault, A. C. (2005). Nanochemistry: A chemical approach to nanomaterials. Cambridge, UK: RSC Publishing.Google Scholar
  7. 7.
    Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.CrossRefPubMedGoogle Scholar
  8. 8.
    Brust, M., & Kiely, C. J. (2002). Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloid and Surface A, 202, 175–186.CrossRefGoogle Scholar
  9. 9.
    Kim, B., Han, G., Toley, B. J., Kim, C. K., Rotello, V. M., & Forbes, N. S. (2010). Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nature Nanotechnology, 5, 465–472.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., et al. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports UK, 5, 8669.CrossRefGoogle Scholar
  11. 11.
    Tien, J., Terfort, A., & Whitesides, G. M. (1997). Microfabrication through electrostatic self-assembly. Langmuir, 13, 5349–5355.CrossRefGoogle Scholar
  12. 12.
    McIntosh, C. M., Esposito, E. A., Boal, A. K., Simard, J. M., Martin, C. T., & Rotello, V. M. (2001). Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. Journal of the American Chemical Society, 123, 7626–7629.CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the Chemical Society, Communications, 2012(134), 1950–1953.Google Scholar
  14. 14.
    Duff, D., Baiker, A., Gameson, I., & Edwards, P. (1993). A new hydrosol of gold clusters .2. A comparison of some different measurement techniques. Langmuir, 9, 2310–2317.CrossRefGoogle Scholar
  15. 15.
    Duff, D. G., Baiker, A., & Edwards, P. P. (1993). A new hydrosol of gold clusters .1. Formation and particle-size variation. Langmuir, 9, 2301–2309.CrossRefGoogle Scholar
  16. 16.
    Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.CrossRefGoogle Scholar
  17. 17.
    Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.CrossRefPubMedGoogle Scholar
  18. 18.
    Perrault, S. D., & Chan, W. C. W. (2009). Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society, 131, 17042–17043.CrossRefPubMedGoogle Scholar
  19. 19.
    Davidson, R. A., & Guo, T. (2014). Average physical enhancement by nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 118, 30221–30228.CrossRefGoogle Scholar
  20. 20.
    Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., Leng, W. H., Hwu, Y., Yang, Y. C., Kim, C. C., et al. (2007). Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics, 106, 323–329.CrossRefGoogle Scholar
  21. 21.
    Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., Lee, C. F., Lee, K. H., Hwu, Y., Lee, Y. C., et al. (2008). Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 19, 1–5. Article ID 295104.Google Scholar
  22. 22.
    Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., et al. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physics in Medicine and Biology, 55, 931–945.CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar, R., Korideck, H., Ngwa, W., Berbeco, R. I., Makrigiorgos, G. M., & Sridhar, S. (2013). Third generation gold nanoplatform optimized for radiation therapy. Translational Cancer Research, 2, 228.Google Scholar
  24. 24.
    Wang, C. H., Chien, C. C., Yu, Y. L., Liu, C. J., Lee, C. F., Chen, C. H., Hwu, Y., Yang, C. S., Je, J. H., & Margaritondo, G. (2007). Structural properties of ‘naked’ gold nanoparticles formed by synchrotron X-ray irradiation. Journal of Synchrotron Radiation, 14, 477–482.CrossRefPubMedGoogle Scholar
  25. 25.
    Merga, G., Saucedo, N., Cass, L. C., Puthussery, J., & Meisel, D. (2010). “Naked” gold nanoparticles: Synthesis, characterization, catalytic hydrogen evolution, and SERS. Journal of Physical Chemistry C, 114, 14811–14818.CrossRefGoogle Scholar
  26. 26.
    Evanoff, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem, 6, 1221–1231.CrossRefPubMedGoogle Scholar
  27. 27.
    Ziegler, C., & Eychmuller, A. (2011). Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. Journal of Physical Chemistry C, 115, 4502–4506.CrossRefGoogle Scholar
  28. 28.
    Bastús, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir, 27, 11098–11105.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu, X. K., Xu, H. L., Xia, H. B., & Wang, D. Y. (2012). Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir, 28, 13720–13726.CrossRefPubMedGoogle Scholar
  30. 30.
    Song, H., Rioux, R. M., Hoefelmeyer, J. D., Komor, R., Niesz, K., Grass, M., Yang, P. D., & Somorjai, G. A. (2006). Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. Journal of the American Chemical Society, 128, 3027–3037.CrossRefPubMedGoogle Scholar
  31. 31.
    Porter, R., Shan, F., & Guo, T. (2005). Coherent anti-stokes Raman scattering microscopy with spectrally tailored ultrafast pulses. The Review of Scientific Instruments, 76, 043108.CrossRefGoogle Scholar
  32. 32.
    Jin, R. C., Jureller, J. E., Kim, H. Y., & Scherer, N. F. (2005). Correlating second harmonic optical responses of single Ag nanoparticles with morphology. Journal of the American Chemical Society, 127, 12482–12483.CrossRefPubMedGoogle Scholar
  33. 33.
    Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., Boritz, C., & Mulfinger, L. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84, 322–325.CrossRefGoogle Scholar
  34. 34.
    Yu, X. J., Li, A., Zhao, C. Z., Yang, K., Chen, X. Y., & Li, W. W. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 11, 3990–4001.CrossRefPubMedGoogle Scholar
  35. 35.
    Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.CrossRefGoogle Scholar
  36. 36.
    Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.CrossRefGoogle Scholar
  37. 37.
    Schulzendorf, M., Cavelius, C., Born, P., Murray, E., & Kraus, T. (2011). Biphasic synthesis of Au@SiO2 core-shell particles with stepwise ligand exchange. Langmuir, 27, 727–732.CrossRefPubMedGoogle Scholar
  38. 38.
    Shankar, C., Dao, A. T. N., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. (2012). Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology, 23, 245704.CrossRefPubMedGoogle Scholar
  39. 39.
    Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.CrossRefPubMedGoogle Scholar
  40. 40.
    Huang, C. W., Kearney, V., Moeendarbari, S., Jiang, R. Q., Christensen, P., Tekade, R., Sun, X. K., Mao, W. H., & Hao, Y. W. (2015). Hollow gold nanoparticles as biocompatible Radiosensitizer: An in vitro proof of concept study. Journal of Nano Research Sw, 32, 106–U140.CrossRefGoogle Scholar
  41. 41.
    Huang, C. W., Jiang, J. C., Lu, M. Y., Sun, L., Meletis, E. I., & Hao, Y. W. (2009). Capturing electrochemically evolved Nanobubbles by electroless deposition. A facile route to the synthesis of hollow nanoparticles. Nano Letters, 9, 4297–4301.CrossRefPubMedGoogle Scholar
  42. 42.
    Moeendarbari, S., Tekade, R., Mulgaonkar, A., Christensen, P., Ramezani, S., Hassan, G., Jiang, R., Oz, O. K., Hao, Y. W., & Sun, X. K. (2016). Theranostic Nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Scientific Reports UK, 6, 20614.CrossRefGoogle Scholar
  43. 43.
    Milosavljevic, B. H., Pimblott, S. M., & Meisel, D. (2004). Yields and migration distances of reducing equivalents in the radiolysis of silica nanoparticles. The Journal of Physical Chemistry. B, 108, 6996–7001.CrossRefGoogle Scholar
  44. 44.
    Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen, Y. Y., Song, G. S., Dong, Z. L., Yi, X., Chao, Y., Liang, C., Yang, K., Cheng, L., & Liu, Z. (2017). Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small, 13, 1602869.CrossRefGoogle Scholar
  46. 46.
    Xing, M. M., Cao, W. H., Pang, T., Ling, X. Q., & Chen, N. (2009). Preparation and characterization of monodisperse spherical particles of X-ray nano-phosphors based on Gd2O2S:Tb. Chinese Science Bulletin, 54, 2982–2986.CrossRefGoogle Scholar
  47. 47.
    Townley, H. E., Kim, J., & Dobson, P. J. (2012). In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale, 4, 5043–5050.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.CrossRefPubMedGoogle Scholar
  49. 49.
    Tang, Y. G., Hu, J., Elmenoufy, A. H., & Yang, X. L. (2015). Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Applied Materials & Interfaces, 7, 12261–12269.CrossRefGoogle Scholar
  50. 50.
    Kamkaew, A., Chen, F., Zhan, Y. H., Majewski, R. L., & Cai, W. B. (2016). Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 10, 3918–3935.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Algar, W. R., Prasuhn, D. E., Stewart, M. H., Jennings, T. L., Blanco-Canosa, J. B., Dawson, P. E., & Medintz, I. L. (2011). The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjugate Chemistry, 22, 825–858.CrossRefPubMedGoogle Scholar
  52. 52.
    Kang, Z. T., Zhang, Y. L., Menkara, H., Wagner, B. K., Summers, C. J., Lawrence, W., & Nagarkar, V. (2011). CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging. Applied Physics Letters, 98, 181914.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Delage, M. E., Lecavalier, M. E., Cloutier, E., Lariviere, D., Allen, C. N., & Beaulieu, L. (2016). Robust shell passivation of CdSe colloidal quantum dots to stabilize radioluminescence emission. AIP Advances, 6, 105011.CrossRefGoogle Scholar
  54. 54.
    Stodilka, R. Z., Carson, J. J. L., Yu, K., Zalman, M. B., Li, C. S., & Wilkinson, D. (2009). Optical degradation of CdSe/ZnS quantum dots upon gamma-ray irradiation. Journal of Physical Chemistry C, 113, 2580–2585.CrossRefGoogle Scholar
  55. 55.
    Romero, J. J., Llansola-Portoles, M. J., Dell'Arciprete, M. L., Rodriguez, H. B., Moore, A. L., & Gonzalez, M. C. (2013). Photo luminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system. Chemistry of Materials, 25, 3488–3498.CrossRefGoogle Scholar
  56. 56.
    Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.CrossRefGoogle Scholar
  57. 57.
    Baldwin, R. K., Pettigrew, K. A., Ratai, E., Augustine, M. P., & Kauzlarich, S. M. (2002). Solution reduction synthesis of surface stabilized silicon nanoparticles. Chemical Communications, 1822–1823.Google Scholar
  58. 58.
    Ma, N., Li, Y., Xu, H. P., Wang, Z. Q., & Zhang, X. (2010). Dual redox responsive assemblies formed from diselenide block copolymers. Journal of the American Chemical Society, 132, 442.CrossRefPubMedGoogle Scholar
  59. 59.
    Kirakci, K., Kubat, P., Fejfarova, K., Martincik, J., Nikl, M., & Lang, K. (2016). X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorganic Chemistry, 55, 803–809.CrossRefPubMedGoogle Scholar
  60. 60.
    Liu, X., Zhang, X., Zhu, M., Lin, G. H., Liu, J., Zhou, Z. F., Tian, X., & Pan, Y. (2017). PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Applied Materials & Interfaces, 9, 279–285.CrossRefGoogle Scholar
  61. 61.
    Qu, Y. Q., Carter, J. D., & Guo, T. (2006). Silica nanocoils. The Journal of Physical Chemistry. B, 110, 8296–8301.CrossRefPubMedGoogle Scholar
  62. 62.
    Qu, Y. Q., Carter, J. D., Sutherland, A., & Guo, T. (2006). Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. Chemical Physics Letters, 432, 195–199.CrossRefGoogle Scholar
  63. 63.
    Bhattarai, S. R., Derry, P. J., Aziz, K., Singh, P. K., Khoo, A. M., Chadha, A. S., Liopo, A., Zubarev, E. R., & Krishnan, S. (2017). Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice. Nanoscale, 9, 5085–5093.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gole, A., & Murphy, C. J. (2004). Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chemistry of Materials, 16, 3633–3640.CrossRefGoogle Scholar
  65. 65.
    Dewi, M. R., Gschneidtner, T. A., Elmas, S., Ranford, M., Moth-Poulsen, K., & Nann, T. (2015). Monofunctionalization and dimerization of nanoparticles using coordination chemistry. ACS Nano, 9, 1434–1439.CrossRefPubMedGoogle Scholar
  66. 66.
    Jain, P. K., & El-Sayed, M. A. (2007). Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells. Nano Letters, 7, 2854–2858.CrossRefPubMedGoogle Scholar
  67. 67.
    Al Zaki, A., Joh, D., Cheng, Z. L., De Barros, A. L. B., Kao, G., Dorsey, J., & Tsourkas, A. (2014). Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano, 8, 104–112.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing Radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.CrossRefGoogle Scholar
  69. 69.
    Fologea, E., Salamo, G., Henry, R., Borrelli, M. J., & Corry, P. M. (2010). Method of controlling drug release from a liposome carrier. US Patent: US8808733B2.Google Scholar
  70. 70.
    Chen, H. M., Wang, G. D., Chuang, Y. J., Zhen, Z. P., Chen, X. Y., Biddinger, P., Hao, Z. L., Liu, F., Shen, B. Z., Pan, Z. W., et al. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249–2256.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fan, W. P., Shen, B., Bu, W. B., Zheng, X. P., He, Q. J., Cui, Z. W., Ni, D. L., Zhao, K. L., Zhang, S. J., & Shi, J. L. (2015). Intranuclear biophotonics by smart design of nuclear-targeting photo−/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 69, 89–98.CrossRefPubMedGoogle Scholar
  72. 72.
    Fan, W. P., Wenbo, B., Bu, Z. Z., Shen, B., Zhang, H., He, Q. J., Ni, D. L., Cui, Z. W., Zhao, K. L., Bu, J. W., et al. (2015). X-ray radiation-controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angewandte Chemie International Edition, 54, 14026–14030.CrossRefPubMedGoogle Scholar
  73. 73.
    Liu, J. J., Chen, Q., Zhu, W. W., Yi, X., Yang, Y., Dong, Z. L., & Liu, Z. (2017). Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Advanced Functional Materials, 27, 1605926.CrossRefGoogle Scholar
  74. 74.
    Pan, C. L., Chen, M. H., Tung, F. I., & Liu, T. Y. (2017). A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomaterialia, 47, 159–169.CrossRefPubMedGoogle Scholar
  75. 75.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  76. 76.
    Rotello, V. M., Ghosh, P., Han, G., De, M., & Kim, C. K. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.CrossRefPubMedGoogle Scholar
  78. 78.
    Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W., & Mirkin, C. A. (2002). Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 296, 1836–1838.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hoyle, C. E., & Bowman, C. N. (2010). Thiol-Ene click chemistry. Angewandte Chemie International Edition, 49, 1540–1573.CrossRefPubMedGoogle Scholar
  81. 81.
    Dondoni, A. (2008). The emergence of thiol-Ene coupling as a click process for materials and bioorganic chemistry. Angewandte Chemie International Edition, 47, 8995–8997.CrossRefPubMedGoogle Scholar
  82. 82.
    Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy. In Department of Medical Biophysics, University of Toronto, Toronto, Vol. Master of science, p 81.Google Scholar
  83. 83.
    Lee, C. Y., Gong, P., Harbers, G. M., Grainger, D. W., Castner, D. G., & Gamble, L. J. (2006). Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: Characterization by XPS, NEXAFS, and fluorescence intensity measurements. Analytical Chemistry, 78, 3316–3325.CrossRefPubMedGoogle Scholar
  84. 84.
    Gu, Y. J., Cheng, J. P., Man, C. W. Y., Wong, W. T., & Cheng, S. H. (2012). Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine Nanotechnology, 8, 204–211.CrossRefGoogle Scholar
  85. 85.
    Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.CrossRefPubMedGoogle Scholar
  86. 86.
    Li, Z., Jin, R. C., Mirkin, C. A., & Letsinger, R. L. (2002). Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Research, 30, 1558–1562.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhu, Z. J., Tang, R., Yeh, Y. C., Miranda, O. R., Rotello, V. M., & Vachet, R. W. (2012). Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. Analytical Chemistry, 84, 4321–4326.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry C, 119, 19513–19519.CrossRefGoogle Scholar
  89. 89.
    Kudgus, R. A., Szabolcs, A., Khan, J. A., Walden, C. A., Reid, J. M., Robertson, J. D., Bhattacharya, R., & Mukherjee, P. (2013). Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One, 8, e57522.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Withers, N .J., Plumley, J. B., Triño, N. D., Sankar, K., Akins, B. A., Rivera, A. C., Smolyakov, G. A., Timmins, G. S., & Osiński, M. (2009). Scintillating-nanoparticle-induced enhancement of absorbed radiation dose. Proc. of SPIE, 7189, 718917Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations