Applications of X-Ray Nanochemistry in Catalysis

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


This chapter reviews fundamental concepts of catalysis for the purpose of explanation and discussion of three different kinds of catalysis that are related to X-ray nanochemistry. The three are regular heterogeneous catalysis, photocatalysis and chemical enhancement as defined in Chap.  3. Each kind of catalysis is discussed and publications in the three areas are reviewed.


Catalysis Chemical enhancement Heterogeneous catalysis Photocatalysis X-ray driven X-ray-driven catalytic reactions 


  1. 1.
    Meisel, D. (2004). Radiation effects in nanoparticle suspensions. In L. M. Liz-Marzán & P. V. Kamat (Eds.), Nanoscale materials (pp. 119–134). New York: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. 2.
    Benson, S., & Cook, P. (2005). Underground geolofical storage. In B. Metz, O. Davisdson, H. de Coninck, M. Loos, & L. Meyer (Eds.), Carbon dioxide capture and storage (pp. 195–276). New York: Cambridge University Press.Google Scholar
  3. 3.
    Bond, G. C., Louis, C., & Thompson, D. T. (2006). Catalysis by gold, G. J. Hutchings (p. 366). London: Imperial College Press.Google Scholar
  4. 4.
    Wu, J. C. S., & Huang, C. (2010). In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Chemical Engineering in China, 4, 120–126.Google Scholar
  5. 5.
    Hiroki, A., & LaVerne, J. A. (2005). Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. The Journal of Physical Chemistry. B, 109, 3364–3370.CrossRefPubMedGoogle Scholar
  6. 6.
    Voinov, M. A., Pagan, J. O. S., Morrison, E., Smirnova, T. I., & Smirnov, A. I. (2011). Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. Journal of the American Chemical Society, 133, 35–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 9, 731–737.CrossRefPubMedGoogle Scholar
  8. 8.
    Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine & Nanotechnology, 7, 604–614.CrossRefGoogle Scholar
  9. 9.
    Kim, T., & Zaera, F. (2012). X-ray-initiated metal-promoted thin film growth. Journal of Physical Chemistry C, 116, 8594–8600.CrossRefGoogle Scholar
  10. 10.
    Kim, B. H., & Kwon, J. W. (2014). Plasmon-assisted radiolytic energy conversion in aqueous solutions. Scientific Reports, 4, 5249.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Garibov, A. A., Velibekova, G. Z., & Agayev, T. N. (1987). Heterogeneous radiolysis of CO2 in the presence of zeolites. Radiation Physics and Chemistry, 29, 71–73.Google Scholar
  12. 12.
    Grodkowski, J., & Neta, P. (2001). Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions. The Journal of Physical Chemistry. B, 105, 4967–4972.CrossRefGoogle Scholar
  13. 13.
    Watanabe, D., Yoshida, T., Allen, C., & Tanabe, T. (2007). Enhancement of gamma-ray radiolysis of carbon dioxide with the assistance of solid materials. Journal of Radioanalytical and Nuclear Chemistry, 272, 461–465.CrossRefGoogle Scholar
  14. 14.
    Schatz, T., Cook, A. R., & Meisel, D. (1999). Capture of charge carriers at the silica nanoparticle-water interface. The Journal of Physical Chemistry. B, 103, 10209–10213.CrossRefGoogle Scholar
  15. 15.
    Cecal, A., & Humelnicu, D. (2011). Hydrogen output from catalyzed radiolysis of water. In P. Tsvetkov (Ed.), Nuclear power – Development, operation and sustainability (pp. 489–510). Rijeka: InTech.Google Scholar
  16. 16.
    Cecal, A., Goanta, M., Palamaru, M., Stoicescu, T., Popa, K., Paraschivescua, A., & Anita, V. (2001). Use of some oxides in radiolytical decomposition of water. Radiation Physics and Chemistry, 62, 333–336.CrossRefGoogle Scholar
  17. 17.
    Gonzalez-Juarez, J. C., Jimenez-Becerril, J., & Cejudo-Alvarez, J. (2010). Degradation of 4-chlorophenol by gamma radiation of Cs-137 and X-rays. Journal of the Mexican Chemical Society, 54, 157–159.Google Scholar
  18. 18.
    Sahu, S. P., & Cates, E. L. (2017). X-ray Radiocatalytic activity and mechanisms of bismuth complex oxides. Journal of Physical Chemistry C, 121, 10538–10545.CrossRefGoogle Scholar
  19. 19.
    Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.CrossRefGoogle Scholar
  20. 20.
    Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the American Chemical Society Communication, 2012(134), 1950–1953.Google Scholar
  21. 21.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  22. 22.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  23. 23.
    Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.CrossRefPubMedGoogle Scholar
  24. 24.
    McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1.
  25. 25.
    Tojo, S., Tachikawa, T., Fujitsuka, M., & Majima, T. (2004). Oxidation processes of aromatic sulfides by hydroxyl radicals in colloidal solution of TiO2 during pulse radiolysis. Chemical Physics Letters, 384, 312–316.CrossRefGoogle Scholar
  26. 26.
    Fujitsuka, M., & Majima, T. (2011). Recent approach in radiation chemistry toward material and biological science. Journal of Physical Chemistry Letters, 2, 2965–2971.CrossRefGoogle Scholar
  27. 27.
    Merga, G., Milosavljevic, B. H., & Meisel, D. (2006). Radiolytic hydrogen yields in aqueous suspensions of gold particles. The Journal of Physical Chemistry. B, 110, 5403–5408.CrossRefPubMedGoogle Scholar
  28. 28.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Busby, C. (2005). Depleted uranium weapons, metal particles, and radiation dose. European Journal of Biology and Bioelectromagnetics, 1, 82–93.Google Scholar
  30. 30.
    Tickell, O. (2008). How war debris could cause cancer. New Scientist (1971), 199, 8–9.CrossRefGoogle Scholar
  31. 31.
    Pattison, J. E., Hugtenburg, R. P., & Green, S. (2010). Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body. Journal of The Royal Society Interface, 7, 603–611.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations