Forensic–Histological Diagnosis of Species, Gender, Age, and Identity

  • Reinhard B. Dettmeyer


Histopathology can help, for instance, in the distinction between animal and human bones. In addition to species diagnosis, gender diagnosis is also possible by means of intracellular Barr body detection, despite the fact that systematic studies on different tissue types using different detection methods, particularly on bones, have apparently not been carried out as yet. While histopathological findings are only of limited use in age diagnosis, they are sometimes able to narrow down an individual’s identity, for example, by the histopathological detection of remnants of a largely removed tattoo. However, if tissue maturity, for instance, needs to be determined, microscopy diagnosis is able to provide information here: e.g., by assessing the degree of fetal lung tissue development or the degree of placental maturation.


  1. Aggarwal NK, Kumar S, Banerjee KK, Agarwal BBL (1996) Sex determination from buccal mucosa. J Forensic Med Toxicol 13:43–44Google Scholar
  2. Ahlquist J, Damsten O (1969) A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci 14:205–212Google Scholar
  3. Anoop UR, Ramesh V, Balamurali PD, Nirima O, Premalatha B, Karthikshree VP (2004) Role of Barr bodies obtained from oral smears in the determination of sex. Indian J Dent Res 15:5–7PubMedGoogle Scholar
  4. Barbet JP, Houette A, Barres D, Durigon M (1988) Histological assessment of gestational age in human embryos and fetuses. Am J Forensic Med Pathol 9:40–44CrossRefPubMedGoogle Scholar
  5. Bouvier M, Ubelaker DH (1977) A comparison of two methods for the microscopic determination of age of death. Am J Phys Anthropol 46:391–394CrossRefPubMedGoogle Scholar
  6. Brits D, Steyn M, L’Abbé EN (2014) A histomorphological analysis of human and non-human femora. Int J Legal Med 128:369–377CrossRefPubMedGoogle Scholar
  7. Caccia G, Magli F, Tagi VM, Porta DGA, Cummaudo M, Márquez-Grant N, Cattaneo C (2016) Histological determination of the human origin from dry bone: a cautionary note for subadults. Int J Legal Med 130:299–307CrossRefPubMedGoogle Scholar
  8. Cains GE, Byard RW (2008) The forensic and cultural implications of tattooing. In: Tsokos M (ed) Forensic pathology reviews, vol 5. Humana Press, Totowa, pp 197–220CrossRefGoogle Scholar
  9. Cannet C, Baraybar JP, Kolopp M, Meyer M, Ludes B (2010) Histomorphometric estimation of age in paraffin-embedded ribs: a feasibility study. Int J Legal Med 125(4):493–502CrossRefPubMedGoogle Scholar
  10. Cannet C, Baraybar JP, Kolopp M, Meyer P, Ludes B (2011) Histomorphometric estimation of age in paraffin-embedded ribs: a feasibility study. Int J Legal Med 125:493–502CrossRefPubMedGoogle Scholar
  11. Chan AHW, Crowder CM, Rogers TL (2007) Variation in cortical bone histology within the human femur and its impact on estimating age at death. Am J Phys Anthropol 132:80–88CrossRefPubMedGoogle Scholar
  12. Cho H, Stout SD, Madsen RW, Streeter MA (2002) Population-specific histological age-estimating method: a model for known African-American and European-American skeletal remains. J Forensic Sci 47:12–18CrossRefPubMedGoogle Scholar
  13. Crotty R, Arora K, Prasad S, Ting DT, Rivera MN, Deshpande V (2017) X-inactive specific transcript RNA in-situ hybridization as a tool for resolving contamination events. Histopathology 71(4):662–665CrossRefPubMedGoogle Scholar
  14. Crowder C, Rosella L (2007) Assessment of intra- and intercostal variation in rib histomorphometry: its impact on evidentiary examination. J Forensic Sci 52:271–276CrossRefPubMedGoogle Scholar
  15. Dillon S, Cunningham C, Felts P (2016) Quantification of osteon morphology using geometric histomorphometrics. J Forensic Sci 61:402–408CrossRefPubMedGoogle Scholar
  16. Dorandeu A, de la Grandmaison GL, Coulibaly B, Durigon M, Piercecchi-Marti MD, Baccino E, Leonetti G (2009) Value of histological study in the fronto-sphenoidal suture for the age estimation at the time of death. Forensic Sci Int 191:64–69CrossRefPubMedGoogle Scholar
  17. Dragoi GS, Melingte PR, Dinca I, Botoran MM, Patrascu E (2014) Histomorphometric evaluation of osteons inside the compacta of long bones diaphysis. Implication in pathology. Rom J Leg Med 22:109–116CrossRefGoogle Scholar
  18. Dürwald W (1987) Gerichtliche Medizin. Barth JA, Leipzig, 3. Aufl., p 75Google Scholar
  19. Emery JL, Mithal A (1960) The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch Dis Child 35:544–547CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ericksen MF (1991) Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol 84:171–179CrossRefPubMedGoogle Scholar
  21. Ericksen MF, Stix AI (1991) Histological examination of age of the first African Baptist church adults. Am J Phys Anthropol 85:247–252CrossRefPubMedGoogle Scholar
  22. Fisher E, Austin D, Werner HM, Chuang YJ, Bersu E, Vorperian HK (2016) Hyoid bone fusion and bone density across the lifespan: prediction of age and sex. Forensic Sci Med Pathol 12:146–157CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fukuda N, Suzuki Y, Sato K, Yajima D, Hayakawa M, Motani H, Kobayashi K, Otsuka K, Nagasawa S, Iwase H (2010) Estimation of age from sclerotic glomeruli. Forensic Sci Int 197:123.e1–123.e4CrossRefGoogle Scholar
  24. Goliath JR, Stewart MC, Stout SD (2016) Variation in osteon histomorphometrics and their impact on age-at-death estimation in older individuals. Forensic Sci Int 262:282.e1–282.e6CrossRefGoogle Scholar
  25. Helmer R (1970) Möglichkeiten und Methoden der zellkernmorphologischen Geschlechtserkennung an Körpergeweben und Sekreten. In: Weinig E, Berg S (eds) Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik. Bd. 9. Schmidt-Römhild, LübeckGoogle Scholar
  26. Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263CrossRefPubMedGoogle Scholar
  27. Iscan MY, Loth SR, Wright RK (1984) Age estimation from the rib by phase analysis: white males. J Forensic Sci 29:1094–1104PubMedGoogle Scholar
  28. Janssen W (1977) Forensische histologie. Schmidt-Römhild, LübeckGoogle Scholar
  29. Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455CrossRefPubMedGoogle Scholar
  30. Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–163CrossRefPubMedGoogle Scholar
  31. Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimating age at death in human bone. Am J Phys Anthropol 49:545–546CrossRefPubMedGoogle Scholar
  32. Kim YS, Dim KI, Park DK, Lee JH, Chung NE, Lee WT, Han SH (2007) Assessment of histomorphological features of the sternal end of the fourth rib for age estimation in Koreans. J Forensic Sci 52:1237–1242CrossRefPubMedGoogle Scholar
  33. Linch CA (2009) Degeneration of nuclei and mitochondria in human hairs. J Forensic Sci 54:346–349CrossRefPubMedGoogle Scholar
  34. Lynnerup N, Thomsen JL, Frohlich B (1998) Intra- and inter-observer variation in histological criteria used in age-at-death determination based on femoral cortical bone. Forensic Sci Int 91:219–230CrossRefPubMedGoogle Scholar
  35. Maat GJR, Maes A, Aarents MJ, Nagelkerke NJD (2006) Histological age prediction from the femur in a contemporary dutch sample: the decrease of non-remodeled bone in the anterior cortex. J Forensic Sci 51:230–237CrossRefPubMedGoogle Scholar
  36. Manjulabai KH, Yadwad BS, Patil PV (1997) A study of Barr bodies in Indian, Malaysian and Chinese subjects. J Forensic Med Toxicol 14:9–13Google Scholar
  37. Martrille L, Irinopoulou T, Bruneval P, Baccino E, Fornes P (2009) Age at death estimation in adults by computer-assisted histomorphometry of decalcified femur cortex. J Forensic Sci 54:1231–1237CrossRefPubMedGoogle Scholar
  38. Michailow R (1975) Die Häufigkeit des Geschlechtschromatins in den Zellkernen innerer Organe, untersucht mit der Abstrichmethode. Z Rechtsmed 76:27–30CrossRefPubMedGoogle Scholar
  39. Mittal T, Sralaya KM, Kuruvilla A, Achary C (2008) Sex determination from buccal mucosa scrapes. Int J Legal Med 123(5):437–440CrossRefPubMedGoogle Scholar
  40. Moharrem J (1934) Über den Nachweis von gruppenspezifischen Stoffen in formalinfixierten Organen. Dtsch Z Gesamte Gerichtl Med 23:197–205Google Scholar
  41. Paine PR, Brenton BP (2006) Dietary health does affect histological age assessment: an evaluation of the Stout and Paine (1992) age estimation equation using secondary osteons from the rib. J Forensic Sci 51:489–492CrossRefPubMedGoogle Scholar
  42. Palazzo E, Andreola S, Battistini A, Gentile G, Zoja R (2010) Release of metals from osteosynthesis implants as a method for identification: post-autopsy histopathological and ultrastructural forensic study. Int J Legal Med 125:21–26CrossRefGoogle Scholar
  43. Patrascu E, Melinte PR, Dragoi GS (2014) Optimized morphologic evaluation of biostructures by examination in polarized light and differential interference contrast microscopy. Rom J Leg Med 22:275–282CrossRefGoogle Scholar
  44. Piercecchi-Marti MD, Adalian P, Liprandi A, Figarella-Branger D, Dutour O, Leonetti G (2004) Fetal visceral maturation: a useful contribution to gestational age estimation in human fetuses. J Forensic Sci 49:912–917CrossRefPubMedGoogle Scholar
  45. Pralea CE, Mihalache G (2007) Importance of Klinefelter syndrome in the pathogenesis of male infertility. Rev Med Chir Soc Med Nat Iasi 111:373–378PubMedGoogle Scholar
  46. Puchtler H, Waldrop FS, Valentine LS (1973) Polarization microscopic studies of connective tissue stained with picro-sirius red F3BA. Beitr Pathol Anat 150:174–187CrossRefGoogle Scholar
  47. Rai B (2010) Comments an sex determination from buccal mucosa scrapes. Int J Legal Med 124:261CrossRefPubMedGoogle Scholar
  48. Rämsch R, Zerndt B (1963) Vergleichende Untersuchungen der Haversschen Kanäle zwischen Menschen und Haustieren. Arch Kriminol 131:74Google Scholar
  49. Rejtarová O, Hejna P, Soukup T, Kuchař M (2009) Age and sexually dimorphic changes in costal cartilages. A preliminary microscopic study. Forensic Sci Int 193:72–78CrossRefPubMedGoogle Scholar
  50. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113:129–136CrossRefPubMedGoogle Scholar
  51. Roksandic M, Vlak D, Schillaci MA, Voicu D (2009) Technical note: applicability of tooth cementum annulation to an archaeological population. Am J Phys Anthropol 140:583–588CrossRefPubMedGoogle Scholar
  52. Sahajpal V, Goyal SP, Thakar MK, Jayapal R (2009) Microscopic hair characteristics of a few bovid species listed under Schedule-I of Wildlife (Protection) Act 1972 of India. Forensic Sci Int 189:34–45CrossRefPubMedGoogle Scholar
  53. Sato I, Nakaki S, Murata K, Takeshita H, Mukai T (2010) Forensic hair analysis to identify animal species on a case of pet animal abuse. Int J Legal Med 124:249–256CrossRefPubMedGoogle Scholar
  54. Schaefer IM, Minkovsky A, Hornick JL (2016) H3K27me3 immunohistochemistry highlights the inactivated X chromosome (Xi) and predicts sex in non-neoplastic tissues. Histopathology 69:702–704CrossRefPubMedGoogle Scholar
  55. Schiwy-Bochat KH (1993) Automatische Kompaktaanalyse zur Speziesdifferenzierung. In: Pesch HJ (ed) Osteologie aktuell VII. Springer, Berlin, pp 512–514CrossRefGoogle Scholar
  56. Shibata M, Hirota A, Tsurozono M, Teranishi N, Uehara M, Yamamoto H, Kita H (1963a) Estimation of age of victims from pieces of their organs. I. The spleen. 1. The thickness of capsule of human spleen. Jpn J Leg Med 17:75Google Scholar
  57. Shibata M, Naripa N, Hirota A, Tsurozono M, Teranishi N, Uehara M, Yamamoto H, Kita H (1963b) Estimation of age of victims from pieces of their organs. II. The lungue. 1. Anthracosis. Jpn J Leg Med 17:83Google Scholar
  58. Slavik V, Meluzin F (1972) Bestimmung der Gruppenzugehörigkeit im system ABO aus histologischem material. Z Rechtsmed 70:79–88CrossRefPubMedGoogle Scholar
  59. Stout SD (1986) The use of bone histomorphometry in skeletal identification: the case of Francisco Pizarro. J Forensic Sci 31:296–300CrossRefPubMedGoogle Scholar
  60. Stout SD (1988) The use of histomorphology to estimate age. J Forensic Sci 33:121–125CrossRefPubMedGoogle Scholar
  61. Stout SD, Dietze WH, Iscan MY, Loth SR (1994) Estimation of age at death using cortical histomorphometry of the sternal end of the fourth rib. J Forensic Sci 39:778–784CrossRefPubMedGoogle Scholar
  62. Stout SD, Gehlert SJ (1980) The relative accuracy and reliability of histological aging methods. Forensic Sci Int 15:181–190CrossRefPubMedGoogle Scholar
  63. Stout SD, Paine PR (1992) Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol 87:111–115CrossRefPubMedGoogle Scholar
  64. Stout SD, Porro MA, Perotti B (1996) Brief communication: a test and correction for the clavicle method of Stout and Paine for histological age estimation of skeletal remains. Am J Phys Anthropol 100:139–142CrossRefPubMedGoogle Scholar
  65. Tersigni MA (2007) Frozen human bone: a microscopic investigation. J Forensic Sci 52:16–20CrossRefPubMedGoogle Scholar
  66. Thompson DD (1979) The core technique in the determination of age at death in skeletons. J Forensic Sci 24:902–915CrossRefPubMedGoogle Scholar
  67. Thompson DD (1981) Microscopic determination of age at death in an autopsy series. J Forensic Sci 26:470–475CrossRefPubMedGoogle Scholar
  68. Thompson DD, Calvin CA (1983) Estimation of age at death by tibial osteon remodeling in an autopsy series. Forensic Sci Int 22:203–211CrossRefPubMedGoogle Scholar
  69. Tridico SR, Houck MM, Kirkbride KP, Smith ME, Yates BC (2014) Morphological identification of animal hair: myths and misconceptions, possibilities and pitfalls. Forensic Sci Int 238:101–107CrossRefPubMedGoogle Scholar
  70. Tröger HD, Jungwirth J (1975) Bestimmung der AB0-Gruppenzugehörigkeit an histologischen Präparaten. Beitr Gerichtl Med 33:326–329PubMedGoogle Scholar
  71. Tschui J, Hewer E (2017) H3K27me3 immunostaining for sex determination in the context of presumed tissue misidentification. Histopathology 72(2):358–359. CrossRefPubMedGoogle Scholar
  72. Vavpotić M, Turk T, Martinčič DS, Balažic J (2009) Characteristics of the number of odontoblasts in human dental pulp post-mortem. Forensic Sci Int 193:122–126CrossRefPubMedGoogle Scholar
  73. Verhoff MA, Kreutz K, Ramsthaler F, Schiwy-Bochat KH (2006) Forensic anthropology and osteology – synopsis and definition. Dtsch Ärztebl 103:A782–A788Google Scholar
  74. Vermeij E, Zoon P, van Wijk M, Gerretsen R (2015) Microscopic residues of bone from dissolving human remains in acids. J Forensic Sci 60:770–776CrossRefPubMedGoogle Scholar
  75. Vogel M (1986) Histologische Entwickungsstadien der Chorionzotten in der Embryonal- und der frühen Fetalperiode (5. bis 20. SSW). Pathologe 7:59–61PubMedGoogle Scholar
  76. Watanabe Y, Konishi M, Shimada M, Ohara H, Iwamoto S (1998) Estimation of age from the femur of Japanese cadavers. Forensic Sci Int 98:55–65CrossRefPubMedGoogle Scholar
  77. Wehner F, Secker K, Wehner HD, Gehring K, Schulz MM (2007) Immunhistochemischer Nachweis von Amelogenin an Zähnen – ein Beitrag zur Abschätzung des Lebensalters bei der Identifikation unbekannter Leichen. Arch Kriminol 220:40–50Google Scholar
  78. Wittwer-Backofen U, Gampe J, Vaupel JW (2004) Tooth cementum annulation for age estimation: results from a large known-age validation study. Am J Phys Anthropol 123:119–129CrossRefPubMedGoogle Scholar
  79. Yoshino M, Imaizumi K, Miyasaka S, Seta S (1994) Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int 64:191–198CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reinhard B. Dettmeyer
    • 1
  1. 1.University Hospital Giessen Institute of Forensic MedicineGiessenGermany

Personalised recommendations