Sex Differences in Regulation of Blood Pressure

  • Jane F. ReckelhoffEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)


Hypertension is one of the leading risk factors for cardiovascular disease, myocardial infarction, and stroke. There are gender differences in the prevalence of hypertension and in the mechanisms responsible for hypertension in humans. This review will discuss the mechanisms for regulation of blood pressure, sex differences that have been identified in animal studies, and the gender differences that have been identified in humans.


Hypertension Obesity Metabolic syndrome Postmenopausal women Hypogonadism Immune system-mediated hypertension Androgens Estrogens Endothelin 



This work is supported by NIH grants, R01HL66072, R01HL67028, P01HL51971, and P20GM121334.


  1. 1.
    Alexander BT, Cockrell KL, Rinewalt AN, Herrington JN, Granger JP. Enhanced renal expression of preproendothelin mRNA during chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1388–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen O, Legro R, Normal R, Taylor A, Witchel S. Position statement: criteria for defining polycystic ovary syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Baba T, Endo T, Honnma H, et al. Association between polycystic ovary syndrome and female-to male transsexuality. Hum Reprod. 2006;22:1011–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring. Unique aspects of BP during sleep. Hypertension. 2007;49:235–1241.CrossRefGoogle Scholar
  5. 5.
    Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310:H137–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. National Heart, Lung, and Blood Institute joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:256072.CrossRefGoogle Scholar
  7. 7.
    Christakou C, Economou F, Livadas S, Piperi C, Adamopoulos C, Marinakis E, Jdiamanti-Kandarakis E. Strong and Positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? Hormones (Athens). 2011;10:292–7.CrossRefGoogle Scholar
  8. 8.
    da Silva AA, do Carmo JM, Kanyicska B, Dubinion J, Brandon E, Hall JE. Endogenous melanocortin system activity contributes to the elevated arterial pressure in spontaneously hypertensive rats. Hypertension. 2008;51:884–90.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dalmasso C, Maranon R, Patil C, Moulana M, Romero DG, Reckelhoff JF. 20-HETE and CYP4A2 ω-hydroxylase contribute to the elevated blood pressure in hyperandrogenemic female rats. Am J Physiol Renal Physiol. 2016;311:F71–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Davis DD, Ruiz AL, Yanes LL, Iliescu R, Yuan K, Moulana M, Racusen LL, Reckelhoff JF. Testosterone supplementation in male obese Zucker rats reduces body weight and improves insulin sensitivity but increases blood pressure. Hypertension. 2012;59:726–31.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Kraker AT, Kenemans P, Smolders RG, Kroeks MV, van der Mooren MJ. Short-term effects of continuous combined oestrogenprogestogen therapy on several cardiovascular risk markers in healthy postmenopausal women; a randomized control trial. Eur J Obstet Gynecol Reprod Biol. 2009;142:139–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, Mosely J, Martin JN Jr, Dechend R, La Marca B. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303:R353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Exp Rev Molec Med. 2008;10:1–21.CrossRefGoogle Scholar
  14. 14.
    do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, Perez de Lara CE, Hall JE. Role of the brain melanocortins in blood pressure regulation. Biochim Biophys Acta. 2017;1863(10 Pt A):2508–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Escobar-Morreale HF, San Millan JL. Abdominal adiposity and the polycystic ovary syndrome. Trends in Endocrinol Metab. 2007;18:266–72.CrossRefGoogle Scholar
  16. 16.
    Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Comparative risk assessment collaborating group. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:134760.CrossRefGoogle Scholar
  17. 17.
    Fortepiani LA, Reckelhoff JF. Treatment with tetrahydrobiopterin reduces blood pressure in male SHR by reducing testosterone synthesis. Am J Physiol Regul Integr Comp Physiol. 2005a;R288:R733–6.CrossRefGoogle Scholar
  18. 18.
    Fortepiani LA, Reckelhoff JF. Increasing oxidative stress with molsidomine increases blood pressure in genetically hypertensive rats but not normotensive controls. Am J Physiol Regul Integr Comp Physiol. 2005b;289:R763–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Fortepiani LA, Reckelhoff JF. Role of oxidative stress in the sex differences in blood pressure in spontaneously hypertensive rats. J Hypertens. 2005c;23:801–5.CrossRefGoogle Scholar
  20. 20.
    Gohar EY, Giachini FR, Pollock DM, Tostes RC. Role of endothelin system in sexual dimorphism in cardiovasular and renal diseaes. Life Sci. 2016;159:20–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gu A, Burt VL, Paulose-Ram R, Dillon CF. Gender differences in hypertension treatment, drug utilization patterns, and blood pressure control am19 US adults with hypertension: data from the national health and examination survey 19992004. Am J Hypertens. 2008;21:78998.Google Scholar
  22. 22.
    Hall JE, Guyton AC, Brands MW. Control of sodium excretion and arterial pressure by intrarenal mechanisms and the renin-angiotensin system. In: Laragh JH, Brenner BM, editors. Hypertension, pathophysiology, diagnosis, and management. 2nd ed. New York: Raven Press; 1995. p. 1452–75.Google Scholar
  23. 23.
    Hall JE, Guyton AC, Brands MW. Pressure-volume regulation in hypertension. Kidney Int Suppl. 1996;55:S35–41.PubMedGoogle Scholar
  24. 24.
    Health, United States. National Center for Health Statistics. With special feature on death abd dying. Hyattsville, MD 2011. Table 67 Hypertension and high blood pressure among persons 20 years of age and over, by selected characteristics: US, selected years 1988–1994 through 2005-2008, 2010. p. 250–51.Google Scholar
  25. 25.
    Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17(Suppl 3):S218–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Hsia J, Margolis KL, Eaton CB, et al. Prehypertension and cardiovascular disease risk in the women’s health initiative. Circulation. 2007;115:85560.Google Scholar
  27. 27.
    Ichikawa A, Sumino H, Ogawa T, Ichikawa S, Nitta K. Effects of long term transdermal hormone replacement therapy on the renin-angiotensin-aldosterone system, plasma bradykinin levels and BP in normotensive postmenopausal women. Geriatr Gerontol Int. 2008;8:259–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Iliescu R, Yanes LL, Bell W, Dwyer T, Baltatu OC, Reckelhoff JF. Role of the renal nerves in blood pressure in male and female SHR. Am J Physiol Regul Integr Comp Physiol. 2006;290:R341–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Issa Z, Seely EW, Rahme M, El-Hajj Fuleihan G. Effects of hormone therapy on blood pressure. Menopause. 2015;22:456–68.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim JK, Alley D, Seeman T, Karlamangla A, Crimmins E. Recent changes in cardiovascular risk factors among women and men. J Women’s Health (Larchmont). 2006;15:73446.Google Scholar
  31. 31.
    Komatsumoto S, Nara M. Changes in the level of endothelin-1 with aging. Nippon Ronen Igakkai Zasshi. 1995;32:664–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality. Lancet. 2002;360:190313.Google Scholar
  33. 33.
    Lima R, Yanes LL, Davis DD, Reckelhoff JF. Roles played by 20-HETE, angiotensin II and endothelin in mediating the hypertension in aging female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R248–51.CrossRefPubMedGoogle Scholar
  34. 34.
    Ljungman C, Kahan T, Schiöler L, Hjerpe P, Hasselström J, Wettermark B, Boström KB, Manhem K. Gender differences in antihypertensive drug treatment: results from the Swedish Primary Care Cardiovascular Database (SPCCD). J Am Soc Hypertens. 2014;8:882–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Lopez-Ruiz AF, Iliescu R, Reckelhoff JF. Refractory blood pressure in female SHR to increased oxidative stress is not mediated by NO or by upregulation of renal antioxidant enzymes. Am J Physiol Regul Integr Comp Physiol. 2010;298:R266–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Mannerås L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, Stener-Victorin E. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology. 2007;148:3781–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Maranon RO, Reckelhoff JF. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system. Physiol Rep. 2016;4:e12669.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maranon RO, Lima R, Mathbout M, Do Carmo JM, Hall JE, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of the sympathetic nervous system in an animal model. Am J Physiol Regul Integr Comp Physiol. 2014;306:R248–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Maranon R, Lima R, Spradley FT, do Carmo JM, Zhang H, Smith AD, Bui E, Thomas RL, Moulana M, Hall JE, Granger JP, Reckelhoff JF. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats. Am J Physiol Regul Integr Comp Physiol. 2015;308:R708–13.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mathis KW, Venegas-Pont M, Masterson CW, Stewart NJ, Wasson KL, Ryan MJ. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension. 2012;59:673–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mosca L, Banka CL, Benjamin EJ, Berr K, Bushnell C, Ganiats T, et al. Update: American Heart Association evidence-based guidelines for cardiovascular disease 2007 update. Circulation. 2007;115:1481–501.CrossRefPubMedGoogle Scholar
  42. 42.
    Nautiyal M, Shaltout HA, de Lima DC, do Nascimento K, Chappell MC, Diz DI. Central angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension. 2012;60:1257–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ong KL, Cheung BM, Man YB, Lau CP, Lam KS. Prevalence, awareness, treatment and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49:6975.CrossRefGoogle Scholar
  44. 44.
    Polderman KH, Stehouwer CD, van Kamp GJ, Dekker GA, Verheugt FW, Gooren LJ. Influence of sex hormones on plasma endothelin levels. Ann Intern Med. 1993;118:429–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Prelevic GM, Kwong P, Byrne DJ, Jagroop IA, Ginsburg J, Mikhailidis DPA. Cross-sectional study of the effect of hormone replacement therapy on cardiovascular disease risk profile in healthy postmenopausal women. Fertil Steril. 2002;77:945–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Reckelhoff JF, Fortepiani LA. Novel mechanisms responsible for postmenopausal hypertension. Hypertension. 2004;43:918–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Reckelhoff JF, Wofford M. Chapter 70: Hypertension in women. In: Rexrode K, Wickline M, editors. Women and health. 2nd ed. New York: Elsevier; 2012.Google Scholar
  48. 48.
    Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31:435–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension. 2000;35:480–3.CrossRefPubMedGoogle Scholar
  50. 50.
    Rodriguez-Iturbe B, Pons H, Johsnon RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97:1127–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.CrossRefPubMedGoogle Scholar
  52. 52.
    Romero JC, Reckelhoff JF. State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 1999;34:943–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Routledge FS, McFetridge-Durdle JA, Stress DCR. Menopausal status and nocturnal BP dipping patterns among hypertensive women. Can J Cardiol. 2009;25:e157–63.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sarganas G, Neuhauser HK. The persisting gender gap in hypertension management and control in Germany: 1998 and 2008-2011. Hypertens Res. 2016;39:457–66.CrossRefPubMedGoogle Scholar
  55. 55.
    Sartori-Valinotti JC, Iliescu R, Yanes LL, Dorsett-Martin W, Reckelhoff JF. Sex differences in the pressor response to angiotensin II when the endogenous renin-angiotensin system is blocked. Hypertension. 2008;51:1170–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Schnackenberg CG, Welch WJ, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension. 1998;32:59–64.CrossRefPubMedGoogle Scholar
  57. 57.
    Seaberg EC, Muñoz A, Lu M, Detels R, Margolick JB, Riddler SA, Williams CM, Phair JP. Multicenter AIDS cohort study. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS. 2005;19:953–60.CrossRefPubMedGoogle Scholar
  58. 58.
    Sedeek M, Gilbert JS, LaMarca BB, Sholook M, Chandler DL, Wang Y, Granger JP. Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am J Hypertens. 2008;21:1152–6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, Kimmel PL, Johnson KC, Goff DC Jr, Fine LJ, Cutler JA, Cushman WC, Cheung AK, Ambrosius WT. A randomized trial of intensive versus standard blood pressure control. N Engl J Med. 2015;373:2103–16.CrossRefGoogle Scholar
  60. 60.
    Stepp DW, Osakwe CC, Belin de Chantemele EJ, Mintz JD. Vascular effects of deletion of melanocortin-4 receptors in rats. Physiol Rep. 2013;1:e00146.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stolarz K, Staessen JA, O’Brien ET, Night-time BP. Dipping into the future? J Hypertension. 2002;21:2131–3.CrossRefGoogle Scholar
  62. 62.
    Sullivan JC, Sasser JM, Pollock JS. Sexual dimorphism in oxidant status in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R764–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Swart R, van Rooyen JM, Mels CMC. Change in renin, cardiovascular and inflammatory markers over three years in black and white population: the SABPA Study. BMC Cardiovasc Disord. 2017;17:104.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Taylor EB, Ryan MJ. Immunosuppression with mycophenolate mofetil attenuates hypertension in an experimental model of autoimmune disease. J Am Heart Assoc. 2017;27:6.Google Scholar
  65. 65.
    Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Physiol Regul Integ Comp Physiol. 2012;303:R359–67.CrossRefGoogle Scholar
  66. 66.
    Tyson CC, Coffman TM. In the wake of systolic blood pressure intervention trial: new targets for improving hypertension management in chronic kidney disease? Nephron. 2017;135:287–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Venegas-Pont M, Sartori-Valinotti JC, Glover PH, Reckelhoff JF, Ryan MJ. Sexual dimorphism in the blood pressure response to angiotensin II in mice after angiotensin converting enzyme blockade. Am J Hypertens. 2010;23:92–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24:793–801.CrossRefPubMedGoogle Scholar
  69. 69.
    Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA. 1994;91:5212–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Wenger NK, Ferdinand KC, Bairey Merz CN, Walsh MN, Gulati M, Pepine CJ. American College of Cardiology Cardiovascular Disease in women committee. Women, hypertension, and the systolic blood pressure intervention trial. Am J Med. 2016;29:1030–6.CrossRefGoogle Scholar
  71. 71.
    Xue B, Pamidimukkala J, Hay M. Sex differences in the development of angiotensin II induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol. 2005;288:H2177–84.CrossRefPubMedGoogle Scholar
  72. 72.
    Yanes LL, Romero DG, Cucchiarelli VE, Fortepiani LA, Gomez-Sanchez CE, Santacruz F, Reckelhoff JF. Role of endothelin in mediating postmenopausal hypertension in a rat model. Am J Physiol Regul Integr Comp Physiol. 2005a;288:R229–33.CrossRefPubMedGoogle Scholar
  73. 73.
    Yanes L, Romero D, Iliescu R, Cucchiarelli VE, Fortepiani LA, Santacruz F, Bell W, Zhang H, Reckelhoff JF. Systemic arterial pressure response to two weeks of Tempol therapy in SHR: involvement of NO, the RAS, and oxidative stress. Am J Physiol Regul Integr Comp Physiol. 2005b;288:R903–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Yanes LL, Romero DG, Iles JW, Iliescu R, Gomez-Sanchez C, Reckelhoff JF. Sexual dimorphism in the renin-angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2006;291:R383–90.CrossRefPubMedGoogle Scholar
  75. 75.
    Yanes LL, Lima R, Moulana M, Romero DG, Yuan K, Ryan MJ, Baker R, Zhang H, Fan F, Davis DD, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of 20-HETE. Am J Physiol Regul Integr Comp Physiol. 2011a;300:R1543–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yanes LL, Romero DG, Moulana M, Lima R, Davis DD, Zhang H, Lockhart R, Racusen LC, Reckelhoff JF. Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome. Gend Med. 2011b;8:103–15.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yi X, Han Z, Zhou Q, Lin J, Liu P. 20-Hydroxyeicosatetraenoic acid as a predictor of neurological deterioration in acute minor ischemic stroke. Stroke. 2016a;47:3045–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Yi X, Wu L, Liao D, Wang C, Zhang B. Interactions among CYP2C8, EPHX2, and CYP4A11 variants and CYP plasma metabolite levels in ischemic stroke. J Atheroscler Thromb. 2016b;23:1286–93.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhang F, Chen CL, Qian JQ, Yan JT, Cianflone K, Xiao X, Wang DW. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase. Cell Res. 2005;15:717–24.CrossRefPubMedGoogle Scholar
  80. 80.
    Zimmerman MA, Harris RA, Sullivan JC. Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT1 receptor blockade than males. Am J Physiol Renal Physiol. 2014;306:F1136–42.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zu L, Guo G, Zhou B, Gao W. Relationship between metabolites of arachidonic acid and prognosis in patients with acute coronary syndrome. Thromb Res. 2016;144:192–201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cell and Molecular Biology and Women’s Health Research Center and The Mississippi Center of Excellence in Perinatal ResearchUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations