Stroke Rehabilitation: Therapy Robots and Assistive Devices

  • Verena Klamroth-MarganskaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)


Motor impairments after stroke are often persistent and disabling, and women are less likely to recover and show poorer functional outcomes. To regain motor function after stroke, rehabilitation robots are increasingly integrated into clinics. The devices fall into two main classes: robots developed to train lost motor function after stroke (therapy devices) and robots designed to compensate for lost skills (i.e., assistive devices). The article provides an overview of therapeutic options with robots for motor rehabilitation after stroke.


Rehabilitation robots Brain injury Sex differences Motor function Neurorehabilitation Therapy device Telerehabilitation Locomotor training Multiplayer strategy 


  1. 1.
    Feigin VL, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–55.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.CrossRefPubMedGoogle Scholar
  3. 3.
    Bushnell C, et al. Guidelines for the prevention of stroke in women. Stroke. 2014;45(5):1545–88.CrossRefPubMedGoogle Scholar
  4. 4.
    W. G. f. t. W. s. H. I. Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRefGoogle Scholar
  5. 5.
    Lackland DT, et al. Factors influencing the decline in stroke mortality. Stroke. 2014;45(1):315–53.CrossRefPubMedGoogle Scholar
  6. 6.
    N. C. f. H. Statistics. Health, United States, 2011. Hyattsville: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2012.Google Scholar
  7. 7.
    Appelros P, Stegmayr B, Terént A. Sex differences in stroke epidemiology. Stroke. 2009;40(4):1082–90.CrossRefPubMedGoogle Scholar
  8. 8.
    O’Donnell MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Olsen TS, Dehlendorff C, Andersen KK. Sex-related time-dependent variations in post-stroke survival–evidence of a female stroke survival advantage. Neuroepidemiology. 2007;29(3–4):218–25.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295(3):306–13.CrossRefPubMedGoogle Scholar
  11. 11.
    A. Trialists’Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.CrossRefGoogle Scholar
  12. 12.
    Reeves MJ, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gibson CL. Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab. 2013;33(9):1355–61.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res. 2015;286:152–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Gibson CL, Gray LJ, Murphy SP, Bath PM. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab. 2006;26(9):1103–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Carlo A, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in Europe. Stroke. 2003;34(5):1114–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Paolucci S, et al. Is sex a prognostic factor in stroke rehabilitation? Stroke. 2006;37(12):2989–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Bassey E, Harries U. Normal values for handgrip strength in 920 men and women aged over 65 years, and longitudinal changes over 4 years in 620 survivors. Clin Sci. 1993;84(3):331–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Rantanen T, Era P, Heikkinen E. Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years. J Am Geriatr Soc. 1997;45(12):1439–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Veerbeek JM, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PloS One. 2014;9(2):e87987.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane Library. 2015.Google Scholar
  24. 24.
    Bowden MG, Woodbury ML, Duncan PW. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr Opin Neurol. 2013;26(1):37–42.CrossRefPubMedGoogle Scholar
  25. 25.
    French B, et al. Repetitive task training for improving functional ability after stroke. The Cochrane Library. 2016.Google Scholar
  26. 26.
    Lang CE, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lang CE, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(3). Scholar
  29. 29.
    Lo AC, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Keller U, Klamroth V, van Hedel HJ, Riener R. ChARMin: a robot for pediatric arm rehabilitation. In: Robotics and Automation (ICRA), 2013 I.E. International Conference on. IEEE; 2013. p. 3908–13.Google Scholar
  31. 31.
    Guidali M, Erne R, Riener R, Lambercy O, Gassert R, “Instrumented handles for an arm rehabilitation robot,” In: Automed Workshop; 2010.Google Scholar
  32. 32.
    Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–42.CrossRefGoogle Scholar
  33. 33.
    Guidali M, Schlink P, Duschau-Wicke A, Riener R. Online learning and adaptation of patient support during ADL training. In: Proceedings of IEEE International Rehabilitation Robotics (ICORR) conference; 2011. p. 1–6.Google Scholar
  34. 34.
    Klamroth-Marganska V, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Valero-Cuevas FJ, Klamroth-Marganska V, Winstein CJ, Riener R. Robot-assisted and conventional therapies produce distinct rehabilitative trends in stroke survivors. J NeuroEng Rehabil. 2016;13(1):92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.CrossRefPubMedGoogle Scholar
  37. 37.
    Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Hesse S, Sarkodie-Gyan T, Uhlenbrock D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects-Weiterentwicklung Eines Mechanisierten Gangtrainers mit Steuerung des Massenschwerpunktes zur Gangrehabilitation Rollstuhlpflichtiger Patienten. Biomed Tech/Biomed Eng. 1999;44(7–8):194–201.CrossRefGoogle Scholar
  39. 39.
    Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7(1):30.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schmidt K, et al. The Myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Front Neurorobot. 2017;11:57.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Asbeck AT, De Rossi SM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015;34(6):744–62.CrossRefGoogle Scholar
  42. 42.
    Awad LN, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9(400):eaai9084.CrossRefPubMedGoogle Scholar
  43. 43.
    Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. The Cochrane Library. 2017.Google Scholar
  44. 44.
    Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, Riener R. Effect of error augmentation on brain activation and motor learning of a complex locomotor task. Front Neurosci. 2017;11:526.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cesqui B, Aliboni S, Mazzoleni S, Carrozza M, Posteraro F, Micera S. On the use of divergent force fields in robot-mediated neurorehabilitation. In: Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on. IEEE; 2008. p. 854–861.Google Scholar
  46. 46.
    Carel C, et al. Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab. 2000;20(3):478–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Heuer H, Lüttgen J. Robot assistance of motor learning: a neuro-cognitive perspective. Neurosci Biobehav Rev. 2015;56:222–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46(4):357–75.CrossRefPubMedGoogle Scholar
  49. 49.
    van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil. 2014;95(2):338–44.CrossRefPubMedGoogle Scholar
  50. 50.
    Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.CrossRefPubMedGoogle Scholar
  51. 51.
    Cortes JC, et al. A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31(6):552–60.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Agostini M, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21(4):202–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen J, Jin W, Zhang X-X, Xu W, Liu X-N, Ren C-C. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2015;24(12):2660–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Butler A, Bay C, Wu D, Richards K, Buchanan S. Expanding tele-rehabilitation of stroke through in-home robot. 2014.Google Scholar
  55. 55.
    Ivanova E, Minge M, Schmidt H, Thüring M, Krüger J. User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke. Curr Dir Biomed Eng. 2017;3(1):39–43.Google Scholar
  56. 56.
    Just F, Baur K, Riener R, Klamroth-Marganska V, Rauter G. Online adaptive compensation of the ARMin Rehabilitation Robot. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE international conference on IEEE; 2016. p. 747–752.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Health Sciences and Technology (D-HEST), Sensory-Motor Systems (SMS) LabInstitute of Robotics and Intelligent Systems (IRIS), ETH ZurichZurichSwitzerland
  2. 2.Medical Faculty, Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, University of ZurichZurichSwitzerland

Personalised recommendations