Sex-Specific Analysis of Cardiovascular Function pp 579-587 | Cite as
Stroke Rehabilitation: Therapy Robots and Assistive Devices
Chapter
First Online:
Abstract
Motor impairments after stroke are often persistent and disabling, and women are less likely to recover and show poorer functional outcomes. To regain motor function after stroke, rehabilitation robots are increasingly integrated into clinics. The devices fall into two main classes: robots developed to train lost motor function after stroke (therapy devices) and robots designed to compensate for lost skills (i.e., assistive devices). The article provides an overview of therapeutic options with robots for motor rehabilitation after stroke.
Keywords
Rehabilitation robots Brain injury Sex differences Motor function Neurorehabilitation Therapy device Telerehabilitation Locomotor training Multiplayer strategyReferences
- 1.Feigin VL, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–55.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.CrossRefPubMedGoogle Scholar
- 3.Bushnell C, et al. Guidelines for the prevention of stroke in women. Stroke. 2014;45(5):1545–88.CrossRefPubMedGoogle Scholar
- 4.W. G. f. t. W. s. H. I. Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRefGoogle Scholar
- 5.Lackland DT, et al. Factors influencing the decline in stroke mortality. Stroke. 2014;45(1):315–53.CrossRefPubMedGoogle Scholar
- 6.N. C. f. H. Statistics. Health, United States, 2011. Hyattsville: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2012.Google Scholar
- 7.Appelros P, Stegmayr B, Terént A. Sex differences in stroke epidemiology. Stroke. 2009;40(4):1082–90.CrossRefPubMedGoogle Scholar
- 8.O’Donnell MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.CrossRefPubMedGoogle Scholar
- 9.Olsen TS, Dehlendorff C, Andersen KK. Sex-related time-dependent variations in post-stroke survival–evidence of a female stroke survival advantage. Neuroepidemiology. 2007;29(3–4):218–25.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295(3):306–13.CrossRefPubMedGoogle Scholar
- 11.A. Trialists’Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.CrossRefGoogle Scholar
- 12.Reeves MJ, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Gibson CL. Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab. 2013;33(9):1355–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res. 2015;286:152–65.CrossRefPubMedGoogle Scholar
- 15.Gibson CL, Gray LJ, Murphy SP, Bath PM. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab. 2006;26(9):1103–13.CrossRefPubMedGoogle Scholar
- 16.Di Carlo A, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in Europe. Stroke. 2003;34(5):1114–9.CrossRefPubMedGoogle Scholar
- 17.Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.CrossRefPubMedGoogle Scholar
- 18.Paolucci S, et al. Is sex a prognostic factor in stroke rehabilitation? Stroke. 2006;37(12):2989–94.CrossRefPubMedGoogle Scholar
- 19.Bassey E, Harries U. Normal values for handgrip strength in 920 men and women aged over 65 years, and longitudinal changes over 4 years in 620 survivors. Clin Sci. 1993;84(3):331–7.CrossRefPubMedGoogle Scholar
- 20.Rantanen T, Era P, Heikkinen E. Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years. J Am Geriatr Soc. 1997;45(12):1439–45.CrossRefPubMedGoogle Scholar
- 21.Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–8.CrossRefPubMedGoogle Scholar
- 22.Veerbeek JM, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PloS One. 2014;9(2):e87987.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane Library. 2015.Google Scholar
- 24.Bowden MG, Woodbury ML, Duncan PW. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr Opin Neurol. 2013;26(1):37–42.CrossRefPubMedGoogle Scholar
- 25.French B, et al. Repetitive task training for improving functional ability after stroke. The Cochrane Library. 2016.Google Scholar
- 26.Lang CE, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Lang CE, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(3). https://doi.org/10.1186/1743-0003-11-3.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Lo AC, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Keller U, Klamroth V, van Hedel HJ, Riener R. ChARMin: a robot for pediatric arm rehabilitation. In: Robotics and Automation (ICRA), 2013 I.E. International Conference on. IEEE; 2013. p. 3908–13.Google Scholar
- 31.Guidali M, Erne R, Riener R, Lambercy O, Gassert R, “Instrumented handles for an arm rehabilitation robot,” In: Automed Workshop; 2010.Google Scholar
- 32.Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–42.CrossRefGoogle Scholar
- 33.Guidali M, Schlink P, Duschau-Wicke A, Riener R. Online learning and adaptation of patient support during ADL training. In: Proceedings of IEEE International Rehabilitation Robotics (ICORR) conference; 2011. p. 1–6.Google Scholar
- 34.Klamroth-Marganska V, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.CrossRefPubMedGoogle Scholar
- 35.Valero-Cuevas FJ, Klamroth-Marganska V, Winstein CJ, Riener R. Robot-assisted and conventional therapies produce distinct rehabilitative trends in stroke survivors. J NeuroEng Rehabil. 2016;13(1):92.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.CrossRefPubMedGoogle Scholar
- 37.Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.CrossRefPubMedGoogle Scholar
- 38.Hesse S, Sarkodie-Gyan T, Uhlenbrock D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects-Weiterentwicklung Eines Mechanisierten Gangtrainers mit Steuerung des Massenschwerpunktes zur Gangrehabilitation Rollstuhlpflichtiger Patienten. Biomed Tech/Biomed Eng. 1999;44(7–8):194–201.CrossRefGoogle Scholar
- 39.Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7(1):30.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Schmidt K, et al. The Myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Front Neurorobot. 2017;11:57.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Asbeck AT, De Rossi SM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015;34(6):744–62.CrossRefGoogle Scholar
- 42.Awad LN, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9(400):eaai9084.CrossRefPubMedGoogle Scholar
- 43.Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. The Cochrane Library. 2017.Google Scholar
- 44.Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, Riener R. Effect of error augmentation on brain activation and motor learning of a complex locomotor task. Front Neurosci. 2017;11:526.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Cesqui B, Aliboni S, Mazzoleni S, Carrozza M, Posteraro F, Micera S. On the use of divergent force fields in robot-mediated neurorehabilitation. In: Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on. IEEE; 2008. p. 854–861.Google Scholar
- 46.Carel C, et al. Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab. 2000;20(3):478–84.CrossRefPubMedGoogle Scholar
- 47.Heuer H, Lüttgen J. Robot assistance of motor learning: a neuro-cognitive perspective. Neurosci Biobehav Rev. 2015;56:222–40.CrossRefPubMedGoogle Scholar
- 48.Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46(4):357–75.CrossRefPubMedGoogle Scholar
- 49.van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil. 2014;95(2):338–44.CrossRefPubMedGoogle Scholar
- 50.Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.CrossRefPubMedGoogle Scholar
- 51.Cortes JC, et al. A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31(6):552–60.CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Agostini M, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21(4):202–13.CrossRefPubMedGoogle Scholar
- 53.Chen J, Jin W, Zhang X-X, Xu W, Liu X-N, Ren C-C. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2015;24(12):2660–8.CrossRefPubMedGoogle Scholar
- 54.Butler A, Bay C, Wu D, Richards K, Buchanan S. Expanding tele-rehabilitation of stroke through in-home robot. 2014.Google Scholar
- 55.Ivanova E, Minge M, Schmidt H, Thüring M, Krüger J. User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke. Curr Dir Biomed Eng. 2017;3(1):39–43.Google Scholar
- 56.Just F, Baur K, Riener R, Klamroth-Marganska V, Rauter G. Online adaptive compensation of the ARMin Rehabilitation Robot. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE international conference on IEEE; 2016. p. 747–752.Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018