Advertisement

Epidemiology of Congenital Heart Disease with Emphasis on Sex-Related Aspects

  • Byung Won Yoo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Gender differences in prevalence, manifestation, treatment outcomes, and prognosis have been well known for acquired heart disease such as coronary artery disease. Regarding congenital heart disease (CHD), it is recognized that the incidence of each congenital heart defect varies according to sex observed during a time span of more than 40 years. As diagnostic and surgical methods for CHD have achieved dramatic advances for the past decades, more newborns with CHD were able to survive and reach adulthood. Thereafter gender differences have begun to be reported on mortality, progress to pulmonary arterial hypertension, treatment outcomes, and prognosis in patients with CHD. However, it has been less known in the field of CHD yet, and this contribution describes information that is relatively well studied to date.

Keywords

Congenital heart disease Gender Sex ratio Women Ethnicity Incidence Prevalence Manifestation Pulmonary arterial hypertension Outcome Complication Prognosis 

References

  1. 1.
    Rothman KJ, Fyler DC. Sex, birth order, and maternal age characteristics of infants with congenital heart defects. Am J Epidemiol. 1976;104:527–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.CrossRefGoogle Scholar
  3. 3.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.CrossRefGoogle Scholar
  4. 4.
    Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol. 2014;35:975–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Yeh SJ, Chen HC, Lu CW, Wang JK, Huang LM, Huang SC, et al. Prevalence, mortality, and the disease burden of pediatric congenital heart disease in Taiwan. Pediatr Neonatol. 2013;54:113–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Qu Y, Liu X, Zhuang J, Chen G, Mai J, Guo X, et al. Incidence of congenital heart disease: The 9-year experience of the Guangdong Registry of Congenital Heart Disease, China. PLoS One. 2016;11:e0159257. https://doi.org/10.1371/journal.pone.0159257.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wren C, Richmond S, Donaldson L. Temporal variability in birth prevalence of cardiovascular malformations. Heart. 2000;83:414–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. National time trends in congenital heart defects, Denmark, 1977–2005. Am Heart J. 2009;157:467–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Fixler DE, Pastor P, Chamberlin M, Sigman E, Eifler CW. Trends in congenital heart disease in Dallas County births. 1971–1984. Circulation. 1990;81:137–42.CrossRefPubMedGoogle Scholar
  10. 10.
    van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.CrossRefGoogle Scholar
  11. 11.
    Pradat P, Francannet C, Harris JA, Robert E. The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol. 2003;24:195–221.CrossRefPubMedGoogle Scholar
  12. 12.
    Calzolari E, Garani G, Cocchi G, Magnani C, Rivieri F, Neville A, et al. Congenital heart defects: 15 years of experience of the Emilia-Romagna Registry (Italy). Eur J Epidemiol. 2003;18:773–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Egbe A, Uppu S, Lee S, Stroustrup A, Ho D, Srivastava S. Temporal variation of birth prevalence of congenital heart disease in the United States. Congenit Heart Dis. 2015;10:43–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Moons P, Sluysmans T, De Wolf D, Massin M, Suys B, Benatar A, et al. Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21st century. Acta Paediatr. 2009;98:472–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Liebson PR. Cardiovascular risk in special populations IV: congenital heart defects. Prev Cardiol. 2010;13:49–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Aubry P, Demian H. Sex differences in congenital heart disease. Ann Cardiol Angeiol (Paris). 2016;65:440–5.CrossRefGoogle Scholar
  17. 17.
    McBride KL, Marengo L, Canfield M, Langlois P, Fixler D, Belmont JW. Epidemiology of noncomplex left ventricular outflow tract obstruction malformations (aortic valve stenosis, coarctation of the aorta, hypoplastic left heart syndrome) in Texas, 1999–2001. Birth Defects Res A Clin Mol Teratol. 2005;73:555–61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Michalski AM, Richardson SD, Browne ML, Carmichael SL, Canfield MA, Van Zutphen AR, et al. Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997–2009. Am J Med Genet. 2015;167A:1071–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Shaw GM, Carmichael SL, Kaidarova Z, Harris JA. Differential risks to males and females for congenital malformations among 2.5 million California births, 1989–1997. Birth Defects Res A Clin Mol Teratol. 2003;67:953–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Sokal R, Tata LJ, Fleming KM. Sex prevalence of major congenital anomalies in the United Kingdom: a national population-based study and international comparison meta-analysis. Birth Defects Res A Clin Mol Teratol. 2014;100:79–91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tennant PWG, Samarasekera SD, Pless-Mulloli T, Rankin J. Sex differences in the prevalence of congenital anomalies: a population-based study. Birth Defects Res A Clin Mol Teratol. 2011;91:894–901.CrossRefPubMedGoogle Scholar
  22. 22.
    Warnes CA. Sex differences in congenital heart disease: should a woman be more like a man? Circulation. 2008;118:3–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Warnes CA. Bicuspid aortic valve and coarctation: two villains part of a diffuse problem. Heart. 2003;89:965–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Duffels MGJ, Engelfriet PM, Berger RMF, van Loon RLE, Hoendermis E, Vriend JWJ, et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol. 2007;120:198–204.CrossRefPubMedGoogle Scholar
  25. 25.
    Klitzner TS, Lee M, Rodriguez S, R-KR C. Sex-related disparity in surgical mortality among pediatric patients. Congenit Heart Dis. 2006;1:77–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Somerville J. The Denolin Lecture: the woman with congenital heart disease. Eur Heart J. 1998;19:1766–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Shapiro S, Traiger GL, Turner M, McGoon MD, Wason P, Barst RJ. Sex differences in the diagnosis, treatment and outcome of patients with pulmonary arterial hypertension enrolled in the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Chest. 2012;141:363–73.CrossRefGoogle Scholar
  28. 28.
    Marelli A, Gauvreau K, Landzberg M, Jenkins K. Sex differences in mortality in children undergoing congenital heart disease surgery. A United States population-based study. Circulation. 2010;122(Suppl. 1):S234–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Harvey RE, Coffman KE, Miller VM. Women-specific factors to consider in risk, diagnosis and treatment of cardiovascular disease. Womens Health (Lond). 2015;11:239–57.CrossRefGoogle Scholar
  30. 30.
    Lee HW, Eghbali-Webb M. Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor- and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol. 1998;30:1359–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Fyler DC. Report of the New England regional infant cardiac program. Pediatrics. 1980;65:375–461.Google Scholar
  32. 32.
    DiBardino DJ, Pasquali SK, Hirsch JC, Benjamin DK, Kleeman KC, Sala-zar JD, et al. Effect of sex and race on outcome in patients undergoing congenital heart surgery: an analysis of the Society of Thoracic Surgeons Congenital Heart database. Ann Thorac Surg. 2012;94:2054–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, Vliegen HW, et al. Gender and outcome in adult congenital heart disease. Circulation. 2008;118:26–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Engelfriet P, Mulder BJM. Gender differences in adult congenital heart disease. Neth Heart J. 2009;17:414–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zomer CA, Ionescu-Ittu R, Vaartjes I, Pilote L, Mackie AS, Therrien J, et al. Sex differences in hospital mortality in adults with congenital heart disease. The impact of reproductive health. J Am Coll Cardiol. 2013;62:58–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Sarikouch S, Boethig D, Peters B, Kropf S, Dubowy KO, Lange P, et al. Poorer right ventricular systolic function and exercise capacity in women after repair of tetralogy of Fallot: a sex comparison of standard deviation scores based on sex-specific reference values in healthy control subjects. Circ Cardiovasc Imaging. 2013;6:924–33.CrossRefPubMedGoogle Scholar
  37. 37.
    Egidy Assenza G, Cassater D, Landzberg M, Geva T, Schreier J, Graham D, et al. The effects of pregnancy on right ventricular remodeling in women with repaired tetralogy of Fallot. Int J Cardiol. 2013;168:1847–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Sarikouch S, Koerperich H, Dubowy KO, Boethig D, Boettler P, Mir TS, et al. Impact of gender and age on cardiovascular function late after repair of tetralogy of Fallot: percentiles based on cardiac magnetic resonance. Circ Cardiovasc Imaging. 2011;4:703–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Kerkhof PLM, van de Ven PM, Yoo BW, Peace RA, Heyndrickx GR, Handly N. Ejection fraction as related to basic components in the left and right ventricular volume domains. Int J Cardiol. 2018;255:105–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuipers JM, van der Bom T, van Riel ACMJ, Meijboom FJ, van Dijk APJ, Pieper PG, et al. Secundum atrial septal defect is associated with reducedsurvival in adult men. Eur Heart J. 2015;36:2079–86.CrossRefGoogle Scholar
  41. 41.
    Yoo BW, Kim JO, Kim YJ, Choi JY, Park HK, Park YH, et al. Impact of pressure load caused by right ventricular outflow tract obstruction on right ventricular volume overload in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg. 2012;143:1299–304.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Severance HospitalYonsei University College of MedicineSeoulRepublic of Korea

Personalised recommendations