Hemodynamic and Electrocardiographic Aspects of Uncomplicated Singleton Pregnancy

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)


Pregnancy is associated with significant changes in maternal hemodynamics, which are triggered by profound systemic vasodilation and mediated through the autonomic nervous system as well as the renin-angiotensin-aldosterone system. Vascular function changes to help accommodate an increase in intravascular volume due to blood volume expansion associated with pregnancy while maintaining the efficiency of ventricular-arterial coupling and diastolic perfusion pressure. The heart undergoes physiological (eccentric) hypertrophy due to increased volume load and cardiac stroke work, whereas the functional change of the left ventricle remains controversial. There are changes in cardiac electrical activity during pregnancy which can be detected in the electrocardiogram that are not related to disease. Sympathetic activation is a common phenomenon during uncomplicated pregnancy and may be a compensatory mechanism induced by profound systemic vasodilation and a decrease in mean arterial pressure. Despite marked sympathetic activation, vasoconstrictor responsiveness is blunted during uncomplicated pregnancy. There are race and ethnic differences in maternal hemodynamic adaptations to uncomplicated pregnancy, which may be attributed to differences in socioeconomic status or in prevalence rates of cardiovascular risk factors.


Gestation Hemodynamic adaptations Hormones Autonomic circulatory control Cardiac-vascular function Pregnancy 



The author would like to thank Dr. Satyam Sarma for his constructive comments and suggestions on this chapter.


  1. 1.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.CrossRefGoogle Scholar
  2. 2.
    Abehsira G, Bachelot A, Badilini F, Koehl L, Lebot M, Favet C, Touraine P, Funck-Brentano C, Salem JE. Complex influence of gonadotropins and sex steroid hormones on QT interval duration. J Clin Endocrinol Metab. 2016;101:2776–84.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Accini JL, Sotomayor A, Trujillo F, Barrera JG, Bautista L, Lopez-Jaramillo P. Colombian study to assess the use of noninvasive determination of endothelium-mediated vasodilatation (CANDEV). Normal values and factors associated. Endothelium. 2001;8:157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Adamson DL, Nelson-Piercy C. Managing palpitations and arrhythmias during pregnancy. Heart. 2007;93:1630–6.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Anderson RJ, Berl T, McDonald KM, Schrier RW. Prostaglandins: effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int. 1976;10:205–15.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Antonazzo P, Cetin I, Tarricone D, Lombardi F, Pardi G. Cardiac autonomic modulation in normal, high-risk, and in vitro fertilization pregnancies during the first trimester. Am J Obstet Gynecol. 2004;190:199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Antzelevitch C, Shimizu W, Yan GX, Sicouri S. Cellular basis for QT dispersion. J Electrocardiol. 1998;30(30 Suppl):168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    August P, Lenz T, Ales KL, Druzin ML, Edersheim TG, Hutson JM, Muller FB, Laragh JH, Sealey JE. Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia. Am J Obstet Gynecol. 1990;163:1612–21.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Aurigemma GP, Zile MR, Gaasch WH. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation. 2006;113:296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Badke FR, Covell JW. Early changes in left ventricular regional dimensions and function during chronic volume overloading in the conscious dog. Circ Res. 1979;45:420–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Balasch J, Arroyo V, Carmona F, Llach J, Jimenez W, Pare JC, Vanrell JA. Severe ovarian hyperstimulation syndrome: role of peripheral vasodilation. Fertil Steril. 1991;56:1077–83.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy. Eur J Echocardiogr. 2007;8:360–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Barron WM, Mujais SK, Zinaman M, Bravo EL, Lindheimer MD. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy. Am J Obstet Gynecol. 1986;154:80–4.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Barwin BN, Roddie IC. Venous distensibility during pregnancy determined by graded venous congestion. Am J Obstet Gynecol. 1976;125:921–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Baumert M, Javorka M, Seeck A, Faber R, Sanders P, Voss A. Multiscale entropy and detrended fluctuation analysis of QT interval and heart rate variability during normal pregnancy. Comput Biol Med. 2012;42:347–52.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Benjamin N, Rymer J, Todd SD, Thom M, Ritter JM. Sensitivity to angiotensin II of forearm resistance vessels in pregnancy. Br J Clin Pharmacol. 1991;32:523–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bett GC. Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. Clin Sci (Lond). 2016;130:747–59.CrossRefGoogle Scholar
  18. 18.
    Blake MJ, Martin A, Manktelow BN, Armstrong C, Halligan AW, Panerai RB, Potter JF. Changes in baroreceptor sensitivity for heart rate during normotensive pregnancy and the puerperium. Clin Sci (Lond). 2000;98:259–68.CrossRefGoogle Scholar
  19. 19.
    Bouthoorn SH, Gaillard R, Steegers EA, Hofman A, Jaddoe VW, van Lenthe FJ, Raat H. Ethnic differences in blood pressure and hypertensive complications during pregnancy: the generation R study. Hypertension. 2012;60:198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Brewster LM, Clark JF, van Montfrans GA. Is greater tissue activity of creatine kinase the genetic factor increasing hypertension risk in black people of sub-Saharan African descent? J Hypertens. 2000;18:1537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Brewster LM, Coronel CM, Sluiter W, Clark JF, van Montfrans GA. Ethnic differences in tissue creatine kinase activity: an observational study. PLoS One. 2012;7:e32471.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brewster LM, Mairuhu G, Bindraban NR, Koopmans RP, Clark JF, van Montfrans GA. Creatine kinase activity is associated with blood pressure. Circulation. 2006;114:2034–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brewster LM, Taherzadeh Z, Volger S, Clark JF, Rolf T, Wolf H, Vanbavel E, van Montfrans GA. Ethnic differences in resistance artery contractility of normotensive pregnant women. Am J Physiol Heart Circ Physiol. 2010;299:H431–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Brewster LM, van Bree S, Reijneveld JC, Notermans NC, Verschuren WM, Clark JF, van Montfrans GA, de Visser M. Hypertension risk in idiopathic hyperCKemia. J Neurol. 2008;255:11–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Brooks VL, Kane CM, Van Winkle DM. Altered heart rate baroreflex during pregnancy: role of sympathetic and parasympathetic nervous systems. Am J Phys. 1997;273:R960–6.Google Scholar
  26. 26.
    Brooks VL, Keil LC. Changes in the baroreflex during pregnancy in conscious dogs: heart rate and hormonal responses. Endocrinology. 1994;135:1894–901.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Broughton Pipkin F, Morrison R, O'Brien PM. Prostacyclin attenuates both the pressor and adrenocortical response to angiotensin II in human pregnancy. Clin Sci (Lond). 1989;76:529–34.CrossRefGoogle Scholar
  28. 28.
    Bundgaard-Nielsen M, Wilson TE, Seifert T, Secher NH, Crandall CG. Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans. J Physiol. 2010;588:3333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Capeless EL, Clapp JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol. 1989;161:1449–53.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Carpenter RE, D'Silva LA, Emery SJ, Uzun O, Rassi D, Lewis MJ. Changes in heart rate variability and QT variability during the first trimester of pregnancy. Physiol Meas. 2015;36:531–45.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cat Genova G, Veglio F, Rabbia F, Milan A, Grosso T, Chiandussi L. Baroreflex sensitivity in secondary hypertension. Clin Exp Hypertens. 2001;23:89–99.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chapleau MW, Hajduczok G, Sharma RV, Wachtel RE, Cunningham JT, Sullivan MJ, Abboud FM. Mechanisms of baroreceptor activation. Clin Exp Hypertens. 1995;17:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chapleau MW, Heesch CM, Abboud FM. Prevention or attenuation of baroreceptor resetting by pulsatility during elevated pressure. Hypertension. 1987;9:III137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, Johnson A, Osorio F, Goldberg C, Moore LG, Dahms T, Schrier RW. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54:2056–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Chapman AB, Zamudio S, Woodmansee W, Merouani A, Osorio F, Johnson A, Moore LG, Dahms T, Coffin C, Abraham WT, Schrier RW. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Phys. 1997;273:F777–82.Google Scholar
  36. 36.
    Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol. 2002;543:615–31.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chu ZM, Beilin LJ. Mechanisms of vasodilatation in pregnancy: studies of the role of prostaglandins and nitric-oxide in changes of vascular reactivity in the in situ blood perfused mesentery of pregnant rats. Br J Pharmacol. 1993;109:322–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Clapp JF 3rd, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80:1469–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Conrad KP. Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia. Semin Nephrol. 2011;31:15–32.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol. 2014;306:F1121–35.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Conrad KP, Joffe GM, Kruszyna H, Kruszyna R, Rochelle LG, Smith RP, Chavez JE, Mosher MD. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J. 1993;7:566–71.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Curran-Everett D, Morris KG Jr, Moore LG. Regional circulatory contributions to increased systemic vascular conductance of pregnancy. Am J Phys. 1991;261:H1842–7.Google Scholar
  43. 43.
    de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:177–87.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Desai DK, Moodley J, Naidoo DP. Echocardiographic assessment of cardiovascular hemodynamics in normal pregnancy. Obstet Gynecol. 2004;104:20–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dorup I, Skajaa K, Sorensen KE. Normal pregnancy is associated with enhanced endothelium-dependent flow-mediated vasodilation. Am J Phys. 1999;276:H821–5.CrossRefGoogle Scholar
  46. 46.
    Durr JA, Stamoutsos B, Lindheimer MD. Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation J Clin Invest. 1981;68:337–46.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Duvekot JJ, Cheriex EC, Pieters FA, Menheere PP, Peeters LH. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol. 1993;169:1382–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Eckberg DL, Sleight P. Human baroreflex in health and disease. New York Oxford: Oxford University Press; 1992.Google Scholar
  49. 49.
    Ekholm EM, Piha SJ, Erkkola RU, Antila KJ. Autonomic cardiovascular reflexes in pregnancy. A longitudinal study. Clin Auton Res. 1994;4:161–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    El Khoury N, Mathieu S, Marger L, Ross J, El Gebeily G, Ethier N, Fiset C. Upregulation of the hyperpolarization-activated current increases pacemaker activity of the sinoatrial node and heart rate during pregnancy in mice. Circulation. 2013;127(20):2009.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Eneroth-Grimfors E, Westgren M, Ericson M, Ihrman-Sandahl C, Lindblad LE. Autonomic cardiovascular control in normal and pre-eclamptic pregnancy. Acta Obstet Gynecol Scand. 1994;73:680–4.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Estensen ME, Beitnes JO, Grindheim G, Aaberge L, Smiseth OA, Henriksen T, Aakhus S. Altered maternal left ventricular contractility and function during normal pregnancy. Ultrasound Obstet Gynecol. 2013;41:659–66.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Faber R, Baumert M, Stepan H, Wessel N, Voss A, Walther T. Baroreflex sensitivity, heart rate, and blood pressure variability in hypertensive pregnancy disorders. J Hum Hypertens. 2004;18:707–12.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ferrero S, Colombo BM, Ragni N. Maternal arrhythmias during pregnancy. Arch Gynecol Obstet. 2004;269:244–53.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Fischer T, Schobel HP, Frank H, Andreae M, Schneider KT, Heusser K. Pregnancy-induced sympathetic overactivity: a precursor of preeclampsia. Eur J Clin Investig. 2004;34:443–8.CrossRefGoogle Scholar
  56. 56.
    Floras JS, Legault L, Morali GA, Hara K, Blendis LM. Increased sympathetic outflow in cirrhosis and ascites: direct evidence from intraneural recordings. Ann Intern Med. 1991;114:373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Folkow B, Di Bona GF, Hjemdahl P, Toren PH, Wallin BG. Measurements of plasma norepinephrine concentrations in human primary hypertension. A word of caution on their applicability for assessing neurogenic contributions. Hypertension. 1983;5:399–403.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Fu Q, Levine BD. Autonomic circulatory control during pregnancy in humans. Semin Reprod Med. 2009;27:330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fu Q, Witkowski S, Levine BD. Vasoconstrictor reserve and sympathetic neural control of orthostasis. Circulation. 2004;110:2931–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fujime M, Tomimatsu T, Okaue Y, Koyama S, Kanagawa T, Taniguchi T, Kimura T. Central aortic blood pressure and augmentation index during normal pregnancy. Hypertens Res. 2012;35:633–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Gaillard R, Steegers EA, Hofman A, Jaddoe VW. Associations of maternal obesity with blood pressure and the risks of gestational hypertensive disorders. The generation R study. J Hypertens. 2011;29:937–44.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Geva T, Mauer MB, Striker L, Kirshon B, Pivarnik JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133:53–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO 3rd. Effects of estrogen replacement therapy on peripheral vasomotor function in postmenopausal women. Am J Cardiol. 1995;75:264–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gilson GJ, Samaan S, Crawford MH, Qualls CR, Curet LB. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study. Obstet Gynecol. 1997;89:957–62.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Goodlin RC. Venous reactivity and pregnancy abnormalities. Acta Obstet Gynecol Scand. 1986;65:345–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gowda RM, Khan IA, Mehta NJ, Vasavada BC, Sacchi TJ. Cardiac arrhythmias in pregnancy: clinical and therapeutic considerations. Int J Cardiol. 2003;88:129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Greenwood JP, Scott EM, Stoker JB, Walker JJ, Mary DA. Sympathetic neural mechanisms in normal and hypertensive pregnancy in humans. Circulation. 2001;104:2200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Greenwood JP, Stoker JB, Walker JJ, Mary DA. Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension. J Hypertens. 1998;16:617–24.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Grindheim G, Estensen ME, Langesaeter E, Rosseland LA, Toska K. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30:342–50.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hassager C, Riis BJ, Strom V, Guyene TT, Christiansen C. The long-term effect of oral and percutaneous estradiol on plasma renin substrate and blood pressure. Circulation. 1987;76:753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Haynes WG, Noon JP, Walker BR, Webb DJ. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens. 1993;11:1375–80.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    He XR, Wang W, Crofton JT, Share L. Effects of 17beta-estradiol on the baroreflex control of sympathetic activity in conscious ovariectomized rats. Am J Phys. 1999;277:R493–8.Google Scholar
  73. 73.
    Hissen SL, El Sayed K, Macefield VG, Brown R, Taylor CE. Muscle sympathetic nerve activity peaks in the first trimester in healthy pregnancy: a longitudinal case study. Clin Auton Res. 2017;27:401–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68:540–3.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hytten FE, Paintin DB. Increase in plasma volume during normal pregnancy. J Obstet Gynaecol Br Emp. 1963;70:402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Iyengar MR. Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil. 1984;5:527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jarvis SS, Shibata S, Bivens TB, Okada Y, Casey BM, Levine BD, Fu Q. Sympathetic activation during early pregnancy in humans. J Physiol. 2012;590:3535–43.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jespersen CM, Arnung K, Hagen C, Hilden T, Nielsen F, Nielsen MD, Giese J. Effects of natural oestrogen therapy on blood pressure and renin-angiotensin system in normotensive and hypertensive menopausal women. J Hypertens. 1983;1(4):361.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Johnson JM, Rowell LB, Niederberger M, Eisman MM. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ Res. 1974;34:515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kametas NA, McAuliffe F, Hancock J, Chambers J, Nicolaides KH. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18:460–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kamiya A, Kawada T, Mizuno M, Miyamoto T, Uemura K, Seki K, Shimizu S, Sugimachi M. Baroreflex increases correlation and coherence of muscle sympathetic nerve activity (SNA) with renal and cardiac SNAs. J Physiol Sci. 2006;56:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Miyamoto T, Shimizu S, Uemura K, Aiba T, Sunagawa K, Sugimachi M. Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Am J Physiol Heart Circ Physiol. 2005;289:H2641–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kanai A, Salama G. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in Guinea pig hearts. Circ Res. 1995;77:784–802.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Katz R, Karliner JS, Resnik R. Effects of a natural volume overload state (pregnancy) on left ventricular performance in normal human subjects. Circulation. 1978;58:434–41.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4:e6134.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Khalil RA, Crews JK, Novak J, Kassab S, Granger JP. Enhanced vascular reactivity during inhibition of nitric oxide synthesis in pregnant rats. Hypertension. 1998;31:1065–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Risk factors for preeclampsia in nulliparous women in distinct ethnic groups: a prospective cohort study. Obstet Gynecol. 1998;92:174–8.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Kuo CD, Chen GY, Yang MJ, Lo HM, Tsai YS. Biphasic changes in autonomic nervous activity during pregnancy. Br J Anaesth. 2000;84:323–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lafleur L, Mitchell GF. Differences in the immunological activities of antibody-secreting cell precursors in mouse spleen selected on the basis of antigen-binding capacity. Eur J Immunol. 1975;5:648–52.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lechmanova M, Kittnar O, Mlcek M, Slavicek J, Dohnalova A, Havranek S, Kolarik J, Parizek AQT. Dispersion and T-loop morphology in late pregnancy and after delivery. Physiol Res. 2002;51:121–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Leduc L, Wasserstrum N, Spillman T, Cotton DB. Baroreflex function in normal pregnancy. Am J Obstet Gynecol. 1991;165:886–90.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Liu LX, Arany Z. Maternal cardiac metabolism in pregnancy. Cardiovasc Res. 2014;101:545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lucini D, Strappazzon P, Vecchia LD, Maggioni C, Pagani M. Cardiac autonomic adjustments to normal human pregnancy: insight from spectral analysis of R-R interval and systolic arterial pressure variability. J Hypertens. 1999;17:1899–904.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lusiani L, Ronsisvalle G, Bonanome A, Visona A, Castellani V, Macchia C, Pagnan A. Echocardiographic evaluation of the dimensions and systolic properties of the left ventricle in freshman athletes during physical training. Eur Heart J. 1986;7:196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ma X, Sigmund CD, Hingtgen SD, Tian X, Davisson RL, Abboud FM, Chapleau MW. Ganglionic action of angiotensin contributes to sympathetic activity in renin-angiotensinogen transgenic mice. Hypertension. 2004;43:312–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Mabie WC, DiSessa TG, Crocker LG, Sibai BM, Arheart KLA. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170:849–56.Google Scholar
  97. 97.
    Magness RR, Cox K, Rosenfeld CR, Gant NF. Angiotensin II metabolic clearance rate and pressor responses in nonpregnant and pregnant women. Am J Obstet Gynecol. 1994;171:668–79.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Magriples U, Boynton MH, Kershaw TS, Duffany KO. Rising SS, Ickovics JR. Blood pressure changes during pregnancy: impact of race, body mass index, and weight gain. Am J Perinatol. 2013;30:415–24.Google Scholar
  99. 99.
    Mahendru AA, Everett TR, Wilkinson IB, Lees CC, McEniery CM. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014;32:849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mahendru AA, Foo FL, McEniery CM, Everett TR, Wilkinson IB, Lees CC. Change in maternal cardiac output from preconception to mid-pregnancy is associated with birth weight in healthy pregnancies. Ultrasound Obstet Gynecol. 2017;49:78–84.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Marciniak A, Claus P, Sutherland GR, Marciniak M, Karu T, Baltabaeva A, Merli E, Bijnens B, Jahangiri M. Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J. 2007;28:2627–36.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Martin A, Brown MA, Bucci J, Whitworth JA. Measuring venous capacitance and blood flow in pregnancy. Aust N Z J Obstet Gynaecol. 1997;37:335–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Mersich B, Rigo J Jr, Besenyei C, Lenard Z, Studinger P, Kollai M. Opposite changes in carotid versus aortic stiffness during healthy human pregnancy. Clin Sci (Lond). 2005;109:103–7.CrossRefGoogle Scholar
  104. 104.
    Mesa A, Jessurun C, Hernandez A, Adam K, Brown D, Vaughn WK, Wilansky S. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99:511–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Moertl MG, Ulrich D, Pickel KI, Klaritsch P, Schaffer M, Flotzinger D, Alkan I, Lang U, Schlembach D. Changes in haemodynamic and autonomous nervous system parameters measured non-invasively throughout normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S179–83.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Molino P, Veglio F, Genova GC, Melchio R, Benedetto C, Chiarolini L, Rabbia F, Grosso T, Mulatero P, Chiandussi L. Baroreflex control of heart rate is impaired in pre-eclampsia. J Hum Hypertens. 1999;13:179–83.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94:667–72.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Nakagawa M, Katou S, Ichinose M, Nobe S, Yonemochi H, Miyakawa I, Saikawa T. Characteristics of new-onset ventricular arrhythmias in pregnancy. J Electrocardiol. 2004;37:47–53.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Nama V, Antonios TF, Onwude J, Manyonda IT. Mid-trimester blood pressure drop in normal pregnancy: myth or reality? J Hypertens. 2011;29:763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Nisell H, Hjemdahl P, Linde B. Cardiovascular responses to circulating catecholamines in normal pregnancy and in pregnancy-induced hypertension. Clin Physiol. 1985;5:479–93.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Novak J, Parry LJ, Matthews JE, Kerchner LJ, Indovina K, Hanley-Yanez K, Doty KD, Debrah DO, Shroff SG, Conrad KP. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 2006;20:2352–62.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Okada Y, Best SA, Jarvis SS, Shibata S, Parker RS, Casey BM, Levine BD, Fu Q. Asian women have attenuated sympathetic activation but enhanced renal-adrenal responses during pregnancy compared to Caucasian women. J Physiol. 2015;593:1159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Paller MS. Mechanism of decreased pressor responsiveness to ANG II, NE, and vasopressin in pregnant rats. Am J Phys. 1984;247:H100–8.Google Scholar
  114. 114.
    Pandey AK, Banerjee AK, Das A, Bhawani G, Kumar A, Majumadar B, Bhattacharya AK. Evaluation of maternal myocardial performance during normal pregnancy and post partum. Indian Heart J. 2010;62:64–7.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Paulus WJ, Shah AMNO. cardiac diastolic function. Cardiovasc Res. 1999;43:595–606.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Phippard AF, Horvath JS, Glynn EM, Garner MG, Fletcher PJ, Duggin GG, Tiller DJ. Circulatory adaptation to pregnancy--serial studies of haemodynamics, blood volume, renin and aldosterone in the baboon (Papio hamadryas). J Hypertens. 1986;4:773–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Poppas A, Shroff SG, Korcarz CE, Hibbard JU, Berger DS, Lindheimer MD, Lang RM. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95:2407–15.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Quesnell RR, Brooks VL. Alterations in the baroreflex occur late in pregnancy in conscious rabbits. Am J Obstet Gynecol. 1997;176:692–4.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rang S, Wolf H, van Montfrans GA, Karemaker JM. Serial assessment of cardiovascular control shows early signs of developing pre-eclampsia. J Hypertens. 2004;22:369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Robson SC, Hunter S, Boys RJ, Dunlop W. Hemodynamic changes during twin pregnancy. A Doppler and M-mode echocardiographic study. Am J Obstet Gynecol. 1989a;161:1273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989b;256:H1060–5.Google Scholar
  122. 122.
    Robson SC, Hunter S, Dunlop W. Left atrial dimension during early puerperium. Lancet. 1987;2:111–2.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S, Alderman MH, Devereux RB. Parallel cardiac and vascular adaptation in hypertension. Circulation. 1992;86:1909–18.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Sakai K, Imaizumi T, Maeda H, Nagata H, Tsukimori K, Takeshita A, Nakano H. Venous distensibility during pregnancy. Comparisons between normal pregnancy and preeclampsia. Hypertension. 1994;24:461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130:1003–8.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, Ginghina C, Rademakers F, Deprest J, Voigt JU. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5:289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Savvidou MD, Kametas NA, Donald AE, Nicolaides KH. Non-invasive assessment of endothelial function in normal pregnancy. Ultrasound Obstet Gynecol. 2000;15:502–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Savvidou MD, Vallance PJ, Nicolaides KH, Hingorani AD. Endothelial nitric oxide synthase gene polymorphism and maternal vascular adaptation to pregnancy. Hypertension. 2001;38:1289–93.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Schobel HP, Fischer T, Heuszer K, Geiger H, Schmieder RE. Preeclampsia -- a state of sympathetic overactivity. N Engl J Med. 1996;335:1480–5.CrossRefPubMedGoogle Scholar
  130. 130.
    Sealey JE, Itskovitz-Eldor J, Rubattu S, James GD, August P, Thaler I, Levron J, Laragh JH. Estradiol- and progesterone-related increases in the renin-aldosterone system: studies during ovarian stimulation and early pregnancy. J Clin Endocrinol Metab. 1994;79:258–64.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Seely EW, Walsh BW, Gerhard MD, Williams GH. Estradiol with or without progesterone and ambulatory blood pressure in postmenopausal women. Hypertension. 1999;33:1190–4.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Shaamash AH, Elsnosy ED, Makhlouf AM, Zakhari MM, Ibrahim OA, EL-d HM. Maternal and fetal serum nitric oxide (NO) concentrations in normal pregnancy, pre-eclampsia and eclampsia. Int J Gynaecol Obstet. 2000;68:207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sierra-Laguado J, Garcia RG, Lopez-Jaramillo P. Flow-mediated dilatation of the brachial artery in pregnancy. Int J Gynaecol Obstet. 2006;93(1):60.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Silver HM, Tahvanainen KU, Kuusela TA, Eckberg DL. Comparison of vagal baroreflex function in nonpregnant women and in women with normal pregnancy, preeclampsia, or gestational hypertension. Am J Obstet Gynecol. 2001;184:1189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Simmons LA, Gillin AG, Jeremy RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283:H1627–33.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Simonian SX, Herbison AE. Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience. 1997;76:517–29.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Sims EA, Krantz KE. Serial studies of renal function during pregnancy and the puerperium in normal women. J Clin Invest. 1958;37:1764–74.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Slangen BF, Out IC, Janssen BJ, Peeters LL. Blood pressure and heart rate variability in early pregnancy in rats. Am J Phys. 1997;273:H1794–9.Google Scholar
  139. 139.
    Spaanderman ME, Willekes C, Hoeks AP, Ekhart TH, Peeters LL. The effect of pregnancy on the compliance of large arteries and veins in healthy parous control subjects and women with a history of preeclampsia. Am J Obstet Gynecol. 2000;183:1278–86.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Stainer K, Morrison R, Pickles C, Cowley AJ. Abnormalities of peripheral venous tone in women with pregnancy-induced hypertension. Clin Sci (Lond). 1986;70:155–7.CrossRefGoogle Scholar
  141. 141.
    Stein PK, Hagley MT, Cole PL, Domitrovich PP, Kleiger RE, Rottman JN. Changes in 24-hour heart rate variability during normal pregnancy. Am J Obstet Gynecol. 1999;180:978–85.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol. 2009;296:H745–55.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Stewart RD, Nelson DB, Matulevicius SA, Morgan JL, McIntire DD, Drazner MH, Cunningham FG. Cardiac magnetic resonance imaging to assess the impact of maternal habitus on cardiac remodeling during pregnancy. Am J Obstet Gynecol. 2016;214:640 e641-6.CrossRefGoogle Scholar
  144. 144.
    Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Szlachter BN, Quagliarello J, Jewelewicz R, Osathanondh R, Spellacy WN, Weiss G. Relaxin in normal and pathogenic pregnancies. Obstet Gynecol. 1982;59:167–70.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Tanindi A, Akgun N, Pabuccu EG, Gursoy AY, Yuce E, Tore HF, Duvan CI. Electrocardiographic P-wave duration, QT interval, T peak to end interval and Tp-e/QT ratio in pregnancy with respect to trimesters. Ann Noninvasive Electrocardiol. 2016;21:169–74.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and hemodynamics in pregnancy. Int J Endocrinol Metab. 2014;12:e14098.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Tulchinsky D, Korenman SG. The plasma estradiol as an index of fetoplacental function. J Clin Invest. 1971;50(7):1490.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tunbridge RD, Donnai P. Plasma noradrenaline in normal pregnancy and in hypertension of late pregnancy. Br J Obstet Gynaecol. 1981;88:105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol (1985). 2012;113:1253–9.PubMedCentralCrossRefGoogle Scholar
  151. 151.
    Usselman CW, Skow RJ, Matenchuk BA, Chari RS, Julian CG, Stickland MK, Davenport MH, Steinback CD. Sympathetic baroreflex gain in normotensive pregnant women. J Appl Physiol (1985). 2015;119:468–74.CrossRefGoogle Scholar
  152. 152.
    Valensise H, Novelli GP, Vasapollo B, Borzi M, Arduini D, Galante A, Romanini C. Maternal cardiac systolic and diastolic function: relationship with uteroplacental resistances. A Doppler and echocardiographic longitudinal study. Ultrasound Obstet Gynecol. 2000;15:487–97.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2:997–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    van Oppen AC, Stigter RH, Bruinse HW. Cardiac output in normal pregnancy: a critical review. Obstet Gynecol. 1996;87:310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Vinayagam D, Thilaganathan B, Stirrup O, Mantovani E, Khalil A. Maternal hemodynamics in normal pregnancy: reference ranges and role of maternal characteristics. Ultrasound Obstet Gynecol. 2018;51:665–71.CrossRefGoogle Scholar
  157. 157.
    Visontai Z, Lenard Z, Studinger P, Rigo J Jr, Kollai M. Impaired baroreflex function during pregnancy is associated with stiffening of the carotid artery. Ultrasound Obstet Gynecol. 2002;20:364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Voss A, Malberg H, Schumann A, Wessel N, Walther T, Stepan H, Faber R. Baroreflex sensitivity, heart rate, and blood pressure variability in normal pregnancy. Am J Hypertens. 2000;13:1218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Wallin BG, Delius W, Sundlof G. Human muscle nerve sympathetic activity in cardiac arrhythmias. Scand J Clin Lab Invest. 1974;34:293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Wallin BG, Fagius J. Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol. 1988;50:565–76.PubMedCrossRefGoogle Scholar
  161. 161.
    Walther T, Wessel N, Baumert M, Stepan H, Voss A, Faber R. Longitudinal analysis of heart rate variability in chronic hypertensive pregnancy. Hypertens Res. 2005;28:113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Wasserstrum N, Kirshon B, Rossavik IK, Willis RS, Moise KJ Jr, Cotton DB. Implications of sino-aortic baroreceptor reflex dysfunction in severe preeclampsia. Obstet Gynecol. 1989;74:34–9.PubMedGoogle Scholar
  163. 163.
    Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci U S A. 1994;91:5212–6.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Williams DJ, Vallance PJ, Neild GH, Spencer JA, Imms FJ. Nitric oxide-mediated vasodilation in human pregnancy. Am J Phys. 1997;272:H748–52.Google Scholar
  165. 165.
    Williams JK, Adams MR, Herrington DM, Clarkson TB. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol. 1992;20:452–7.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Wilson M, Morganti AA, Zervoudakis I, Letcher RL, Romney BM, Von Oeyon P, Papera S, Sealey JE, Laragh JH. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med. 1980;68:97–104.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Winkleby MA, Kraemer HC, Ahn DK, Varady AN. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988-1994. JAMA. 1998;280:356–62.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Yang CC, Chao TC, Kuo TB, Yin CS, Chen HI. Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR. Am J Physiol Heart Circ Physiol. 2000;278:H1269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Zentner D, du Plessis M, Brennecke S, Wong J, Grigg L, Harrap SB. Deterioration in cardiac systolic and diastolic function late in normal human pregnancy. Clin Sci (Lond). 2009;116:599–606.CrossRefGoogle Scholar
  170. 170.
    Zuspan FP. Catecholamines. Their role in pregnancy and the development of pregnancy-induced hypertension. J Reprod Med. 1979;23:143–50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Internal Medicine, Cardiology DivisionThe University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital DallasDallasUSA

Personalised recommendations