Advertisement

Sex-Specific Ventricular and Vascular Adaptations to Exercise

  • Jill N. Barnes
  • Qi Fu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Increasing data suggest that there are sex differences in ventricular and vascular adaptations to aerobic (endurance) exercise, which may be attributed to different physical and physiological features in men and women. Despite that cardiovascular control during acute exercise at the same relative work rate (e.g., the percentage of peak oxygen uptake) appears to be similar between the sexes, women have blunted responses or adaptations to prolonged (e.g., ≥1 year) exercise training compared with men. Currently, there is little evidence to suggest that exercise-induced vascular adaptations are different between men and women. Furthermore, sex differences in skeletal muscle adaptations to exercise, and how this influences cardiovascular function, remain unclear. Identifying potential differences and the mechanisms behind such exercise-induced adaptations is important for the optimization of exercise interventions between men and women across the life span.

Keywords

Exercise Cardiovascular adaptation Endurance training Aerobic fitness Cardiac output Stroke volume Heart rate Oxygen uptake 

References

  1. 1.
    Aksut SV, Pancholy S, Johnson J, Walter JD, DiMarzio D, Cave V, Cassel D, Heo J, Iskandrian AS. Comparison of left ventricular performance in healthy young women and men during exercise. J Nucl Cardiol. 1996;3(5):415–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Mallah MH, Juraschek SP, Whelton S, Dardari ZA, Ehrman JK, Michos ED, Blumenthal RS, Nasir K, Qureshi WT, Brawner CA, Keteyian SJ, Blaha MJ. Sex differences in cardiorespiratory fitness and all-cause mortality: the Henry Ford Exercise testing (FIT) project. Mayo Clin Proc. 2016;91(6):755–62. https://doi.org/10.1016/j.mayocp.2016.04.002.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Babiker FA, De Windt LJ, van Eickels M, Thijssen V, Bronsaer RJ, Grohe C, van Bilsen M, Doevendans PA. 17beta-estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase A receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation. 2004;109(2):269–76. https://doi.org/10.1161/01.CIR.0000105682.85732.BD.CrossRefPubMedGoogle Scholar
  4. 4.
    Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, Picard MH, Hutter AM Jr, Wood MJ. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985). 2008;104(4):1121–8. https://doi.org/10.1152/japplphysiol.01170.2007.CrossRefGoogle Scholar
  5. 5.
    Barnes JN, Joyner MJ. Physical activity and cardiovascular risk: 10 metabolic equivalents or bust. Mayo Clin Proc. 2013;88(12):1353–5. https://doi.org/10.1016/j.mayocp.2013.10.015.CrossRefPubMedGoogle Scholar
  6. 6.
    Benini R, Prado Nunes PR, Orsatti CL, Barcelos LC, Orsatti FL. Effects of acute total body resistance exercise on hormonal and cytokines changes in men and women. J Sports Med Phys Fitness. 2015;55(4):337–44.PubMedGoogle Scholar
  7. 7.
    Best SA, Okada Y, Galbreath MM, Jarvis SS, Bivens TB, Adams-Huet B, Fu Q. Age and sex differences in muscle sympathetic nerve activity in relation to haemodynamics, blood volume and left ventricular size. Exp Physiol. 2014;99(6):839–48. https://doi.org/10.1113/expphysiol.2013.077248.CrossRefPubMedGoogle Scholar
  8. 8.
    Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.CrossRefPubMedGoogle Scholar
  9. 9.
    Chantler PD. Arterial ventricular uncoupling with age and disease and recoupling with exercise. Exerc Sport Sci Rev. 2017;45(2):70–9. https://doi.org/10.1249/JES.0000000000000100.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol (1985). 2008a;105(4):1342–51. https://doi.org/10.1152/japplphysiol.90600.2008.CrossRefGoogle Scholar
  11. 11.
    Chantler PD, Melenovsky V, Schulman SP, Gerstenblith G, Becker LC, Ferrucci L, Fleg JL, Lakatta EG, Najjar SS. The sex-specific impact of systolic hypertension and systolic blood pressure on arterial-ventricular coupling at rest and during exercise. Am J Physiol Heart Circ Physiol. 2008b;295(1):H145–53. https://doi.org/10.1152/ajpheart.01179.2007.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Charkoudian N, Joyner MJ. Physiologic considerations for exercise performance in women. Clin Chest Med. 2004;25(2):247–55. https://doi.org/10.1016/j.ccm.2004.01.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, Canham RM, Levine BD, Drazner MH. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas Heart Study. Circulation. 2006;113(12):1597–604. https://doi.org/10.1161/CIRCULATIONAHA.105.574400.CrossRefPubMedGoogle Scholar
  14. 14.
    Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61(1):96–103. https://doi.org/10.1016/j.jacc.2012.08.997.CrossRefPubMedGoogle Scholar
  15. 15.
    Cowan MM, Gregory LW. Responses of pre- and post-menopausal females to aerobic conditioning. Med Sci Sports Exerc. 1985;17(1):138–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Creatsa M, Armeni E, Stamatelopoulos K, Rizos D, Georgiopoulos G, Kazani M, Alexandrou A, Dendrinos S, Augoulea A, Papamichael C, Lambrinoudaki I. Circulating androgen levels are associated with subclinical atherosclerosis and arterial stiffness in healthy recently menopausal women. Metabolism. 2012;61(2):193–201. https://doi.org/10.1016/j.metabol.2011.06.005.CrossRefPubMedGoogle Scholar
  17. 17.
    D’Andrea A, Riegler L, Cocchia R, Scarafile R, Salerno G, Gravino R, Golia E, Vriz O, Citro R, Limongelli G, Calabro P, Di Salvo G, Caso P, Russo MG, Bossone E, Calabro R. Left atrial volume index in highly trained athletes. Am Heart J. 2010;159(6):1155–61. https://doi.org/10.1016/j.ahj.2010.03.036.CrossRefPubMedGoogle Scholar
  18. 18.
    Dalpiaz PL, Lamas AZ, Caliman IF, Ribeiro RF Jr, Abreu GR, Moyses MR, Andrade TU, Gouvea SA, Alves MF, Carmona AK, Bissoli NS. Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS One. 2015;10(5):e0127515. https://doi.org/10.1371/journal.pone.0127515.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    De Bondt P, Van de Wiele C, De Sutter J, De Winter F, De Backer G, Dierckx RA. Age- and gender-specific differences in left ventricular cardiac function and volumes determined by gated SPET. Eur J Nucl Med. 2001;28(5):620–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Ehsani AA, Ogawa T, Miller TR, Spina RJ, Jilka SM. Exercise training improves left ventricular systolic function in older men. Circulation. 1991;83(1):96–103.CrossRefPubMedGoogle Scholar
  21. 21.
    Fagard R, Lijnen P, Staessen J, Thijs L, Amery A. Effect of age on the hemodynamic response to posture in nonelderly hypertensive patients. Am J Hypertens. 1994;7(1):30–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Fahs CA, Rossow LM, Yan H, Ranadive SM, Agiovlasitis S, Wilund KR, Baynard T, Fernhall B. Resting and post exercise arterial-ventricular coupling in endurance-trained men and women. J Hum Hypertens. 2013;27(9):552–6. https://doi.org/10.1038/jhh.2013.7.CrossRefPubMedGoogle Scholar
  23. 23.
    Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53(7):1643–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Fitzgerald MD, Tanaka H, Tran ZV, Seals DR. Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis. J Appl Physiol (1985). 1997;83(1):160–5.CrossRefGoogle Scholar
  25. 25.
    Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda). 2013;28(5):330–58. https://doi.org/10.1152/physiol.00019.2013.CrossRefGoogle Scholar
  26. 26.
    Fleg JL, O'Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, Lakatta EG. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol (1985). 1995;78(3):890–900.CrossRefGoogle Scholar
  27. 27.
    Fliegner D, Schubert C, Penkalla A, Witt H, Kararigas G, Dworatzek E, Staub E, Martus P, Ruiz Noppinger P, Kintscher U, Gustafsson JA, Regitz-Zagrosek V. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1597–606. https://doi.org/10.1152/ajpregu.00825.2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Fournier SB, Donley DA, Bonner DE, Devallance E, Olfert IM, Chantler PD. Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study. Med Sci Sports Exerc. 2015;47(1):2–11. https://doi.org/10.1249/MSS.0000000000000388.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Freedson P, Katch VL, Sady S, Weltman A. Cardiac output differences in males and females during mild cycle ergometer exercise. Med Sci Sports. 1979;11(1):16–9.PubMedGoogle Scholar
  30. 30.
    Fu Q, Levine BD. Cardiovascular response to exercise in women. Med Sci Sports Exerc. 2005;37(8):1433–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Fu Q, Levine BD. Exercise and the autonomic nervous system. Handb Clin Neurol. 2013;117:147–60. https://doi.org/10.1016/B978-0-444-53491-0.00013-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Gardin JM, Savage DD, Ware JH, Henry WL. Effect of age, sex, and body surface area on echocardiographic left ventricular wall mass in normal subjects. Hypertension. 1987;9(2 Pt 2):II36–9.PubMedGoogle Scholar
  33. 33.
    Hagberg JM, Allen WK, Seals DR, Hurley BF, Ehsani AA, Holloszy JO. A hemodynamic comparison of young and older endurance athletes during exercise. J Appl Physiol (1985). 1985;58(6):2041–6.CrossRefGoogle Scholar
  34. 34.
    Hagberg JM, Graves JE, Limacher M, Woods DR, Leggett SH, Cononie C, Gruber JJ, Pollock ML. Cardiovascular responses of 70- to 79-yr-old men and women to exercise training. J Appl Physiol (1985). 1989;66(6):2589–94.CrossRefGoogle Scholar
  35. 35.
    Haines CD, Harvey PA, Leinwand LA. Estrogens mediate cardiac hypertrophy in a stimulus-dependent manner. Endocrinology. 2012;153(9):4480–90. https://doi.org/10.1210/en.2012-1353.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, Ross R. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis. 2017;60:11. https://doi.org/10.1016/j.pcad.2017.03.001.CrossRefPubMedGoogle Scholar
  37. 37.
    Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res. 1986;58(2):281–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Hossack KF, Bruce RA. Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(4):799–804.PubMedGoogle Scholar
  39. 39.
    Hossack KF, Kusumi F, Bruce RA. Approximate normal standards of maximal cardiac output during upright exercise in women. Am J Cardiol. 1981;47(5):1080–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Howden EJ, Perhonen M, Peshock RM, Zhang R, Arbab-Zadeh A, Adams-Huet B, Levine BD. Females have a blunted cardiovascular response to one year of intensive supervised endurance training. J Appl Physiol (1985). 2015;119(1):37–46. https://doi.org/10.1152/japplphysiol.00092.2015.CrossRefGoogle Scholar
  41. 41.
    Hutchinson PL, Cureton KJ, Outz H, Wilson G. Relationship of cardiac size to maximal oxygen uptake and body size in men and women. Int J Sports Med. 1991;12(4):369–73. https://doi.org/10.1055/s-2007-1024696.CrossRefPubMedGoogle Scholar
  42. 42.
    Joyner MJ. Physiological limiting factors and distance running: influence of gender and age on record performances. Exerc Sport Sci Rev. 1993;21:103–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Kadda O, Manginas A, Stavridis G, Balanos D, Kotiou M, Panagiotakos DB. Gender analysis in the outcomes of a lifestyle intervention among patients who had an open heart surgery. Angiology. 2016;67(1):66–74. https://doi.org/10.1177/0003319715577293.CrossRefPubMedGoogle Scholar
  44. 44.
    Kanstrup IL, Marving J, Hoilund-Carlsen PF. Acute plasma expansion: left ventricular hemodynamics and endocrine function during exercise. J Appl Physiol (1985). 1992;73(5):1791–6.CrossRefGoogle Scholar
  45. 45.
    Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kawecka-Jaszcz K, Czarnecka D, Olszanecka A, Rajzer M, Jankowski P. The effect of hormone replacement therapy on arterial blood pressure and vascular compliance in postmenopausal women with arterial hypertension. J Hum Hypertens. 2002;16(7):509–16. https://doi.org/10.1038/sj.jhh.1001431.CrossRefPubMedGoogle Scholar
  47. 47.
    Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Kilbom A. Physical training with submaximal intensities in women. I Reaction to exercise and orthostasis Scand J Clin Lab Invest. 1971;28(2):141–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Kilbom A, Astrand I. Physical training with submaximal intensities in women. II Effect on cardiac output Scand J Clin Lab Invest. 1971;28(2):163–75.CrossRefPubMedGoogle Scholar
  50. 50.
    Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. https://doi.org/10.1001/jama.2009.681.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working G. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29. https://doi.org/10.1016/S0140-6736(12)61031-9.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Levine BD. Exercise physiology for the clinician. In: Exercise and sports cardiology. New York: McGraw-Hill, Medical Publishing Division; 2001. p. 3–29.Google Scholar
  53. 53.
    Levine BD. VO2max: what do we know, and what do we still need to know? J Physiol. 2008;586(1):25–34. https://doi.org/10.1113/jphysiol.2007.147629.CrossRefPubMedGoogle Scholar
  54. 54.
    Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG. Left ventricular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation. 1991;84(3):1016–23.CrossRefPubMedGoogle Scholar
  55. 55.
    Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102(4):470–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Martinez-Vizcaino V, Sanchez-Lopez M, Notario-Pacheco B, Salcedo-Aguilar F, Solera-Martinez M, Franquelo-Morales P, Lopez-Martinez S, Garcia-Prieto JC, Arias-Palencia N, Torrijos-Nino C, Mora-Rodriguez R, Rodriguez-Artalejo F. Gender differences on effectiveness of a school-based physical activity intervention for reducing cardiometabolic risk: a cluster randomized trial. Int J Behav Nutr Phys Act. 2014;11:154. https://doi.org/10.1186/s12966-014-0154-4.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    McEniery CM, Yasmin HIR, Qasem A, Wilkinson IB, Cockcroft JR, Investigators A. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff collaborative trial (ACCT). J Am Coll Cardiol. 2005;46(9):1753–60. https://doi.org/10.1016/j.jacc.2005.07.037.CrossRefPubMedGoogle Scholar
  58. 58.
    Mier CM, Domenick MA, Turner NS, Wilmore JH. Changes in stroke volume and maximal aerobic capacity with increased blood volume in men women. J Appl Physiol (1985). 1996;80(4):1180–6.CrossRefGoogle Scholar
  59. 59.
    Mier CM, Domenick MA, Wilmore JH. Changes in stroke volume with beta-blockade before and after 10 days of exercise training in men and women. J Appl Physiol (1985). 1997;83(5):1660–5.CrossRefGoogle Scholar
  60. 60.
    Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45. https://doi.org/10.1161/01.HYP.0000128420.01881.aa.CrossRefPubMedGoogle Scholar
  61. 61.
    Mitchell JH, Tate C, Raven P, Cobb F, Kraus W, Moreadith R, O’Toole M, Saltin B, Wenger N. Acute response and chronic adaptation to exercise in women. Med Sci Sports Exerc. 1992;24(6 Suppl):S258–65.PubMedGoogle Scholar
  62. 62.
    Morita N, Okita K. Is gender a factor in the reduction of cardiovascular risks with exercise training? Circ J. 2013;77(3):646–51.CrossRefPubMedGoogle Scholar
  63. 63.
    Najjar SS, Schulman SP, Gerstenblith G, Fleg JL, Kass DA, O’Connor F, Becker LC, Lakatta EG. Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol. 2004;44(3):611–7. https://doi.org/10.1016/j.jacc.2004.04.041.CrossRefPubMedGoogle Scholar
  64. 64.
    Nichols WW, Denardo SJ, Wilkinson IB, McEniery CM, Cockcroft J, O’Rourke MF. Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens (Greenwich). 2008;10(4):295–303.CrossRefGoogle Scholar
  65. 65.
    Nichols WW, Nichols WW, DA MD. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. 6th ed. London: Hodder Arnold; 2011.Google Scholar
  66. 66.
    Northoff H, Symons S, Zieker D, Schaible EV, Schafer K, Thoma S, Loffler M, Abbasi A, Simon P, Niess AM, Fehrenbach E. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev. 2008;14:86–103.PubMedGoogle Scholar
  67. 67.
    O’Toole ML. Gender differences in the cardiovascular response to exercise. Cardiovasc Clin. 1989;19(3):17–33.PubMedGoogle Scholar
  68. 68.
    Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503.CrossRefPubMedGoogle Scholar
  69. 69.
    Okazaki K, Ichinose T, Mitono H, Chen M, Masuki S, Endoh H, Hayase H, Doi T, Nose H. Impact of protein and carbohydrate supplementation on plasma volume expansion and thermoregulatory adaptation by aerobic training in older men. J Appl Physiol (1985). 2009;107(3):725–33. https://doi.org/10.1152/japplphysiol.91265.2008.CrossRefGoogle Scholar
  70. 70.
    Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol. 1998;508(Pt 3):949–53.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9. https://doi.org/10.1016/j.mce.2014.11.029.CrossRefPubMedGoogle Scholar
  72. 72.
    Park S, Ha JW, Shim CY, Choi EY, Kim JM, Ahn JA, Lee SW, Rim SJ, Chung N. Gender-related difference in arterial elastance during exercise in patients with hypertension. Hypertension. 2008;51(4):1163–9. https://doi.org/10.1161/HYPERTENSIONAHA.107.106690.CrossRefPubMedGoogle Scholar
  73. 73.
    Pearson AC, Guo R, Orsinelli DA, Binkley PF, Pasierski TJ. Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic wall size, thickness, and stiffness. Am Heart J. 1994;128(2):344–51.CrossRefPubMedGoogle Scholar
  74. 74.
    Pedram A, Razandi M, Lubahn D, Liu J, Vannan M, Levin ER. Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-beta to inhibit calcineurin. Endocrinology. 2008;149(7):3361–9. https://doi.org/10.1210/en.2008-0133.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Phillips T, Childs AC, Dreon DM, Phinney S, Leeuwenburgh C. A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc. 2003;35(12):2032–7. https://doi.org/10.1249/01.MSS.0000099112.32342.10.CrossRefPubMedGoogle Scholar
  76. 76.
    Piro M, Della Bona R, Abbate A, Biasucci LM, Crea F. Sex-related differences in myocardial remodeling. J Am Coll Cardiol. 2010;55(11):1057–65. https://doi.org/10.1016/j.jacc.2009.09.065.CrossRefPubMedGoogle Scholar
  77. 77.
    Pivarnik JM, Sherman NW. Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Med Sci Sports Exerc. 1990;22(1):127–30.CrossRefPubMedGoogle Scholar
  78. 78.
    Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda). 2014;29(1):27–38. https://doi.org/10.1152/physiol.00030.2013.CrossRefGoogle Scholar
  79. 79.
    Proctor DN, Beck KC, Shen PH, Eickhoff TJ, Halliwill JR, Joyner MJ. Influence of age and gender on cardiac output-VO2 relationships during submaximal cycle ergometry. J Appl Physiol (1985). 1998;84(2):599–605.CrossRefGoogle Scholar
  80. 80.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112(15):2254–62. https://doi.org/10.1161/CIRCULATIONAHA.105.541078.CrossRefPubMedGoogle Scholar
  81. 81.
    Rerych SK, Scholz PM, Sabiston DC Jr, Jones RH. Effects of exercise training on left ventricular function in normal subjects: a longitudinal study by radionuclide angiography. Am J Cardiol. 1980;45(2):244–52.CrossRefPubMedGoogle Scholar
  82. 82.
    Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18(4):255–64.CrossRefPubMedGoogle Scholar
  83. 83.
    Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ, Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisloff U, American Heart Association Physical Activity Committee of the Council on L, Cardiometabolic H, Council on Clinical C, Council on E, Prevention, Council on C, Stroke N, Council on Functional G, Translational B, Stroke C. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–99. https://doi.org/10.1161/CIR.0000000000000461.CrossRefPubMedGoogle Scholar
  84. 84.
    Rowell LB. Central circulatory adjustments to dynamic exercise. In: Rowell LB, editor. Human Cardiovascular Control. New York: Oxford University Press; 1993. p. 162–203.Google Scholar
  85. 85.
    Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB. Response to exercise after bed rest and after training. Circulation. 1968;38(5 Suppl):VII1–78.PubMedGoogle Scholar
  86. 86.
    Scuteri A, Orru M, Morrell CH, Tarasov K, Schlessinger D, Uda M, Lakatta EG. Associations of large artery structure and function with adiposity: effects of age, gender, and hypertension. The SardiNIA study. Atherosclerosis. 2012;221(1):189–97. https://doi.org/10.1016/j.atherosclerosis.2011.11.045.CrossRefPubMedGoogle Scholar
  87. 87.
    Seals DR, Hagberg JM, Hurley BF, Ehsani AA, Holloszy JO. Endurance training in older men and women. I Cardiovascular responses to exercise J Appl Physiol Respir Environ Exerc Physiol. 1984;57(4):1024–9.PubMedGoogle Scholar
  88. 88.
    Seals DR, Hagberg JM, Spina RJ, Rogers MA, Schechtman KB, Ehsani AA. Enhanced left ventricular performance in endurance trained older men. Circulation. 1994;89(1):198–205.CrossRefPubMedGoogle Scholar
  89. 89.
    Shepherd AP, Granger HJ, Smith EE, Guyton AC. Local control of tissue oxygen delivery and its contribution to the regulation of cardiac output. Am J Phys. 1973;225(3):747–55.Google Scholar
  90. 90.
    Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY, Chung N, Ha JW. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57(10):1226–33. https://doi.org/10.1016/j.jacc.2010.09.067.CrossRefPubMedGoogle Scholar
  91. 91.
    Skavdahl M, Steenbergen C, Clark J, Myers P, Demianenko T, Mao L, Rockman HA, Korach KS, Murphy E. Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol. 2005;288(2):H469–76. https://doi.org/10.1152/ajpheart.00723.2004.CrossRefPubMedGoogle Scholar
  92. 92.
    Snell PG, Mitchell JH. The role of maximal oxygen uptake in exercise performance. Clin Chest Med. 1984;5(1):51–62.PubMedGoogle Scholar
  93. 93.
    Spina RJ, Miller TR, Bogenhagen WH, Schechtman KB, Ehsani AA. Gender-related differences in left ventricular filling dynamics in older subjects after endurance exercise training. J Gerontol A Biol Sci Med Sci. 1996;51(3):B232–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Spina RJ, Ogawa T, Kohrt WM, Martin WH 3rd, Holloszy JO, Ehsani AA. Differences in cardiovascular adaptations to endurance exercise training between older men and women. J Appl Physiol (1985). 1993a;75(2):849–55.CrossRefGoogle Scholar
  95. 95.
    Spina RJ, Ogawa T, Martin WH 3rd, Coggan AR, Holloszy JO, Ehsani AA. Exercise training prevents decline in stroke volume during exercise in young healthy subjects. J Appl Physiol (1985). 1992;72(6):2458–62.CrossRefGoogle Scholar
  96. 96.
    Spina RJ, Ogawa T, Miller TR, Kohrt WM, Ehsani AA. Effect of exercise training on left ventricular performance in older women free of cardiopulmonary disease. Am J Cardiol. 1993b;71(1):99–104.CrossRefPubMedGoogle Scholar
  97. 97.
    Spina RJ, Rashid S, Davila-Roman VG, Ehsani AA. Adaptations in beta-adrenergic cardiovascular responses to training in older women. J Appl Physiol (1985). 2000;89(6):2300–5.CrossRefGoogle Scholar
  98. 98.
    Stachenfeld NS, Mack GW, DiPietro L, Morocco TS, Jozsi AC, Nadel ER. Regulation of blood volume during training in post-menopausal women. Med Sci Sports Exerc. 1998;30(1):92–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Staessen JA, van der Heijden-Spek JJ, Safar ME, Den Hond E, Gasowski J, Fagard RH, Wang JG, Boudier HA, Van Bortel LM. Menopause and the characteristics of the large arteries in a population study. J Hum Hypertens. 2001;15(8):511–8. https://doi.org/10.1038/sj.jhh.1001226.CrossRefPubMedGoogle Scholar
  100. 100.
    Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125(6):1659–66.CrossRefPubMedGoogle Scholar
  101. 101.
    Sullivan MJ, Cobb FR, Higginbotham MB. Stroke volume increases by similar mechanisms during upright exercise in normal men and women. Am J Cardiol. 1991;67(16):1405–12.CrossRefPubMedGoogle Scholar
  102. 102.
    Sun B, Ma JZ, Yong YH, Lv YY. The upper limit of physiological cardiac hypertrophy in elite male and female athletes in China. Eur J Appl Physiol. 2007;101(4):457–63. https://doi.org/10.1007/s00421-007-0517-5.CrossRefPubMedGoogle Scholar
  103. 103.
    Talbot LA, Morrell CH, Metter EJ, Fleg JL. Comparison of cardiorespiratory fitness versus leisure time physical activity as predictors of coronary events in men aged < or = 65 years and > 65 years. Am J Cardiol. 2002;89(10):1187–92.CrossRefPubMedGoogle Scholar
  104. 104.
    Tanaka H, CA DS, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18(1):127–32.CrossRefPubMedGoogle Scholar
  105. 105.
    Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, CA DS, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–5.CrossRefPubMedGoogle Scholar
  106. 106.
    Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, Tinajero C, Zhang R. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34(6):971–8. https://doi.org/10.1038/jcbfm.2014.44.CrossRefPubMedCentralPubMedGoogle Scholar
  107. 107.
    Vermeersch SJ, Rietzschel ER, De Buyzere ML, De Bacquer D, De Backer G, Van Bortel LM, Gillebert TC, Verdonck PR, Segers P. Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. J Hypertens. 2008;26(7):1411–9. https://doi.org/10.1097/HJH.0b013e3282ffac00.CrossRefPubMedGoogle Scholar
  108. 108.
    Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40(12):1037–53. https://doi.org/10.2165/11536910-000000000-00000.CrossRefPubMedGoogle Scholar
  109. 109.
    Vlachopoulos C, Ioakeimidis N, Miner M, Aggelis A, Pietri P, Terentes-Printzios D, Tsekoura D, Stefanadis C. Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis. 2014;233(1):278–83. https://doi.org/10.1016/j.atherosclerosis.2013.12.010.CrossRefPubMedGoogle Scholar
  110. 110.
    Waddell TK, Dart AM, Gatzka CD, Cameron JD, Kingwell BA. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J Hypertens. 2001;19(12):2205–12.CrossRefPubMedGoogle Scholar
  111. 111.
    Wainstein RV, Sasson Z, Mak S. Frequency-dependent left ventricular performance in women and men. Am J Physiol Heart Circ Physiol. 2012;302(11):H2363–71. https://doi.org/10.1152/ajpheart.01125.2011.CrossRefPubMedGoogle Scholar
  112. 112.
    Wells CL, Boorman MA, Riggs DM. Effect of age and menopausal status on cardiorespiratory fitness in masters women runners. Med Sci Sports Exerc. 1992;24(10):1147–54.CrossRefPubMedGoogle Scholar
  113. 113.
    Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov. 2016;15(10):719–29. https://doi.org/10.1038/nrd.2016.153.CrossRefPubMedGoogle Scholar
  114. 114.
    Whyte GP, George K, Sharma S, Firoozi S, Stephens N, Senior R, WJ MK. The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience. Eur J Appl Physiol. 2004;92(4–5):592–7. https://doi.org/10.1007/s00421-004-1052-2.CrossRefPubMedGoogle Scholar
  115. 115.
    Wiebe CG, Gledhill N, Warburton DE, Jamnik VK, Ferguson S. Exercise cardiac function in endurance-trained males versus females. Clin J Sport Med. 1998;8(4):272–9.CrossRefPubMedGoogle Scholar
  116. 116.
    Wilmore JH. The application of science to sport: physiological profiles of male and female athletes. Can J Appl Sport Sci. 1979;4(2):103–15.PubMedGoogle Scholar
  117. 117.
    Wilmore JH, Stanforth PR, Gagnon J, Rice T, Mandel S, Leon AS, Rao DC, Skinner JS, Bouchard C. Cardiac output and stroke volume changes with endurance training: the HERITAGE family study. Med Sci Sports Exerc. 2001;33(1):99–106.CrossRefPubMedGoogle Scholar
  118. 118.
    Yaginuma T, Noda T, Tsuchiya M, Takazawa K, Tanaka H, Kotoda K, Hosoda S. Interaction of left ventricular contraction and aortic input impedance in experimental and clinical studies. Jpn Circ J. 1985;49(2):206–14.CrossRefPubMedGoogle Scholar
  119. 119.
    Zwiren LD, Cureton KJ, Hutchinson P. Comparison of circulatory responses to submaximal exercise in equally trained men and women. Int J Sports Med. 1983;4(4):255–9. https://doi.org/10.1055/s-2008-1026045.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.Institute for Exercise and Environmental MedicineDallasUSA
  3. 3.University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations