Cardiovascular Allometry: Analysis, Methodology, and Clinical Applications

  • John K.-J. LiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)


The classic works of “On Growth and Form” and “The Problem of Relative Growth” that began a century ago have so fittingly, albeit unintentionally, become pertinent to the modern-day clinical treatment strategy of the many patients with cardiovascular disease. This chapter uses allometry, which was established for comparative biology, to explore physiological and pathological differences due to differential growth, which may lead to differing diagnostic and treatment approaches for male versus female patients. Men and women have obvious differences in body and heart weights, as well as different geometries and structures of their blood vessels; the analysis in this chapter extends to their hemodynamic functional differences. This includes dimensional analysis to establish criteria for characterizing functions based on allometric formulations. The clinical applications of sex differences are analyzed for arterial stenosis, aneurysm, atherosclerosis, hypertension, and coronary revascularization. Allometric approaches are applied specifically to isolated cases of systolic hypertension to delineate the intermingled relations of aging and sex differences. This chapter aims to provide some preliminary insights into the usefulness of cardiovascular allometry. Its future impact on clinical diagnosis remains largely unexplored.


Comparative hemodynamics Allometry Cardiovascular function Sex differences 


  1. 1.
    Allebeck P, Bergh C. Height, body mass index and mortality: do social factors explain the association? Public Health. 1992;106:375–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Berger DS, Li JK-J. Concurrent compliance reduction and increased peripheral resistance in the manifestation of isolated systolic hypertension. Am J Cardiol. 1990;65:67–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Berger D, Li JK-J, Laskey WK, Noordergraaf A. Repeated reflection of waves in the systemic arterial system. Am J Physiol (Heart & Circ Physiol). 1993;33(264):H269–81.CrossRefGoogle Scholar
  4. 4.
    Calder WA III. Size, function and life history. New York: Dover; 1996.Google Scholar
  5. 5.
    Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:158–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Caro CG, Fitzgerald JM, Schroter RC. Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for altherogenesis. Proc R Soc Lond B. 1971;177:109–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen C-H, Ting C-T, Lin S-J, Hsu T-L, S-J Ho PC, Chang M-S, O’Connor F, Spurgeon H, Lakatta E, Yin FCP. Which arterial and cardiac parameters best predict left ventricular mass? Circulation. 1998;98:422–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Comerota AJ, Salles-Cunha SX, Daoud Y, Jones L, Beebe HG. Gender differences in blood velocities across carotid stenosis. J Vasc Surg. 2004;40:939–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.CrossRefPubMedGoogle Scholar
  10. 10.
    Dawson TH. Engineering design of the cardiovascular system of mammals. Englewood Cliffs: Prentice-Hall; 1991.Google Scholar
  11. 11.
    DeBakey ME, Lawrie GM, Glaeser DH. Patterns of atherosclerosis and their surgical significance. Ann Surg. 1985;201:115–31.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dickerson JA, Nagaraja HN, Raman SV. Gender-related differences in coronary artery dimensions: a volumetric analysis. Clin Cardiol. 2010;33:E44–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Dodge JT Jr, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 1992;86:232–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Fisher M, Fieman S. Geometric factors of the bifurcation in carotid atherogenesis. Stroke. 1990;21:267–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Fisher LD, Kennedy JW, Davis KB, et al. Association of sex, physical size, and operative mortality after coronary artery bypass in the Coronary Artery Surgery Study (CASS). J Thorac Cardiovasc Surg. 1982;84:334–41.PubMedGoogle Scholar
  16. 16.
    Gasowski J, Wang JG, Staessen JA. Clinical trials in isolated systolic hypertension. Curr Hypertens Rep. 10 1999; 1:387–393.CrossRefPubMedGoogle Scholar
  17. 17.
    Gatzka CD, Cameron JD, Kingwell BA, Dart AM. Relation between coronary artery disease, aortic stiffness, and left ventricular structure in a population sample. Hypertension. 1998;32:575–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Gertler MM, Garn SM, White PD. Young candidates for coronary heart disease. JAMA. 1951;147:621–5.CrossRefGoogle Scholar
  19. 19.
    Gosling RG, Dunbar G, King DH, Newman DL, Side CD, Woodcock JP, Fitzgerald DE, Keates JS, MacMillan D. The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive ultrasonic technique. Angiology. 1971;22:52–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Green HD. Circulatory system: physical principles. In: Glasser O, editor. Medical physics 2. New York: Year Book Publishers; 1950.Google Scholar
  21. 21.
    Gunther B. Allometric ratios, invariant numbers and the theory of biological similarity. Physiol Rev. 1975;55:659.CrossRefPubMedGoogle Scholar
  22. 22.
    Gunther B, DeLa Barra L. Physiometry of the mammalian circulatory system. Acta Physiol Lat-Am. 1966a;16:32.PubMedGoogle Scholar
  23. 23.
    Gunther B, DeLa Barra L. Theories of biological similarities, non-dimensional parameters and invariant numbers. Bull Math Biophys. 1966b;28:9–102.CrossRefGoogle Scholar
  24. 24.
    Gunther B, Guerra B. Biological similarities. Acta Physiol Lat-Am. 1955;5:169.PubMedGoogle Scholar
  25. 25.
    Hales S. Statical essays containing haemostaticks. London: Innys and Manby; 1733.Google Scholar
  26. 26.
    Hansen F, Mangell P, Sonesson B, Länne T. Diameter and compliance in the human common carotid artery–Variations with age and sex. Ultrasound Med Biol. 1995;21(1):1–9.CrossRefGoogle Scholar
  27. 27.
    Huxley, J.S. Problems of relative growth. Methuen, London, 1932.Google Scholar
  28. 28.
    Iberall AS. Anatomy and steady flow characteristics of the arterial system with an introduction of its pulsatile characteristics. Math Biosci. 1967;1:375–95.CrossRefGoogle Scholar
  29. 29.
    Kannam JP, Levy D, Larson M, Wilson PWF. Short stature and risk for mortality and cardiovascular events: the Framingham Heart Study. Circulation. 1994;90:2241–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Karreman G. Some contributions to the mathematical biology of blood circulation. Reflections of pressure wave in the arterial system. Bull Math Biophys. 1952;14:327–50.CrossRefGoogle Scholar
  31. 31.
    Kerkhof PLM, Heyndrickx GR, Li JK. Hemodynamic determinants and ventriculo-arterial coupling are sex-associated in heart failure patients. Conf Proc IEEE Eng Med Biol Soc. 2016 Aug; 2016:3286–3289. PMID: 28227219
  32. 32.
    Kim S, Apple S, GS Mintz TMM, DA Canos AM, Weissman NJ. The importance of gender on coronary artery size: in-vivo assessment by intravascular ultrasound. Clin Cardiol. 2004;27:291–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim H, Kim M, W Shim SO, Kim M, Park SM, Kim YH, Na JO, Shin MS, Yoon HJ, Shin GJ, Cho Y, Kim S, Hong K, Cho KI. Sex difference in the association between brachial pulse pressure and coronary artery disease: the Korean women’s chest pain registry (KoROSE). J Clin Hypertens (Greenwich). 2017;19:38–44.CrossRefGoogle Scholar
  34. 34.
    Kostis JB, Cabrera J, Cheng JQ, Cosgrove NM, Deng Y, Pressel SL, Davis BR. Association between chlorthalidone treatment of systolic hypertension and long-term survival. JAMA. 2011;306:2588–93.CrossRefPubMedGoogle Scholar
  35. 35.
    Lambert R, Teissier G. Theorie de la similitude biologique. Ann Physiol Physiocochem Biol. 1927;3:212.Google Scholar
  36. 36.
    Li JK-JA. New similarity principle for cardiac energetics. Bull Math Biol. 1983a;45:1005–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Li JK-J. Hemodynamic significance of metabolic turnover rate. J Theor Biol. 1983b;103:333–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Li JK-J. Comparative cardiac mechanics: Laplace’s law. J Theor Biol. 1986a;118:339–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Li JK-J. Time domain resolution of forward and reflected waves in the aorta. IEEE Trans Biomed Eng. 1986b;BME-33:783–5.CrossRefGoogle Scholar
  40. 40.
    Li JK-J. Dominance of geometric over elastic factors in pulse transmission through arterial branching. Bull Math Biol. 1986c;48:97–l03.PubMedGoogle Scholar
  41. 41.
    Li JK-J. Arterial system dynamics. New York: New York University Press; 1987.Google Scholar
  42. 42.
    Li JK-J. Laminar and turbulent flow in the mammalian aorta: Reynolds number. J Theor Biol. 1988;135:409–14.CrossRefPubMedGoogle Scholar
  43. 43.
    Li JK-J. Increased arterial pulse wave reflections and pulsatile energy loss in acute hypertension. Angiol, J Vasc Dis. 1989;40:730–5.Google Scholar
  44. 44.
    Li JK-J. Feedback effects in heart-arterial system interaction. In: Sideman S, Beyar R, editors. Interactive phenomenon in the cardiac system. New York: Plenum; 1993. p. 325–33.CrossRefGoogle Scholar
  45. 45.
    Li JK-J. Comparative cardiovascular dynamics of mammals. Boca Raton: CRC Press; 1996.Google Scholar
  46. 46.
    Li JK-J. A new description of arterial function: the compliance-pressure loop. Angiol, J Vasc Dis. 1998;49:543–8.Google Scholar
  47. 47.
    Li JK-J. The arterial circulation: physical principles and clinical application. Totowa: Humana Press; 2000.CrossRefGoogle Scholar
  48. 48.
    Li JK-J. Dynamics of the vascular system. Singapore: World Scientific; 2004.CrossRefGoogle Scholar
  49. 49.
    Li JK-J, Atlas G. Left ventricle–arterial system interaction in heart failure. Clin Med Insights: Cardiol. 2015;(Suppl):93–9.
  50. 50.
    Li JK-J, Noordergraaf A. Similar pressure pulse propagation and reflection characteristics in aortas of mammals. Am J Phys. 1991;261:R519–21.Google Scholar
  51. 51.
    Li JK-J, Zhu Y. Arterial compliance and its pressure-dependence in hypertension and vasodilation. Angiol J Vasc Dis. 1994;45:113–7.Google Scholar
  52. 52.
    Li JK-J, Melbin J, Riffle RA, Noordergraaf A. Pulse wave propagation. Circulation Res. 1981;49:442–52.CrossRefPubMedGoogle Scholar
  53. 53.
    Li JK-J, Melbin J, Noordergraaf A. Directional disparity of pulse wave reflections in dog arteries. Am J Phys. 1984;247:H95–9.Google Scholar
  54. 54.
    Li JK-J, Cui T, Drzewiecki G. A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng. 1990;BME-37:673–8.CrossRefGoogle Scholar
  55. 55.
    Li JK-J, Zhu Y, Nanna M. Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy. Comput Biol Med. 1997;27:477–85.CrossRefPubMedGoogle Scholar
  56. 56.
    Li JK-J, Zhu Y, O’Hara D, Khaw K. Allometric hemodynamic analysis of isolated systolic hypertension and aging. Cardiovasc Eng. 2007;7:135–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Loiselle DS, Gibbs CL. Species differences in cardiac energies. Am J Phys. 1979:490–8.Google Scholar
  58. 58.
    Martin RR, Haines H. Application of Laplace’s law to mammalian hearts. Comp Biochem Physiol. 1970;34:959.CrossRefPubMedGoogle Scholar
  59. 59.
    Mates RE, Gupta RL, Bell AC, Klocke FJ. Fluid dynamics of coronary artery stenosis. Circ Res. 1978;42:152–62.CrossRefPubMedGoogle Scholar
  60. 60.
    McDonald DA. Blood flow in arteries, vol. 1960. London: Arnold; 1974.Google Scholar
  61. 61.
    McMahon TA. Size and shape in biology. Science. 1973;179:1201–4.CrossRefPubMedGoogle Scholar
  62. 62.
    McMahon TA, Bonner JT. On size and life. New York: Scientific American Library; 1983.Google Scholar
  63. 63.
    Mehta LS, Beckie TM, DeVon HA, et al. Acute myocardial infarction in women: a scientific statement from the american heart association. Circulation. 2016;133:916–47.CrossRefPubMedGoogle Scholar
  64. 64.
    Noordergraaf A, Li JK-J, Campbell KB. Mammalian hemodynamics: a new similarity principle. J Theor Biol. 1979;79:485.CrossRefPubMedGoogle Scholar
  65. 65.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Palmer JR, Rosenberg L, Shapiro S. Stature and the risk of myocardial infarction in women. Am J Epidemiol. 1990;132:27–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Peterson ED, Lansky AJ, Kramer J, Anstrom K, Lanzilotta MJ. Effect of gender on the outcomes of contemporary percutaneous coronary intervention. Am J Cardiol. 2001;88:359–64.CrossRefPubMedGoogle Scholar
  68. 68.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.CrossRefPubMedGoogle Scholar
  69. 69.
    Rexrode KM, Hennekens CH, Willett WC, et al. A prospective study of body mass index, weight change, and risk of stroke in women. JAMA. 1997;277:1539–45.CrossRefPubMedGoogle Scholar
  70. 70.
    Rich-Edwards JW, Manson JE, Stampfer MJ, et al. Height and the risk of cardiovascular disease in women. Am J Epidemiol. 1995;142:909–17.CrossRefPubMedGoogle Scholar
  71. 71.
    Robard S, Williams F, Williams C. The spherical dynamics of the heart. Am Heart J. 1959;57:348–60.CrossRefGoogle Scholar
  72. 72.
    Rosen R. Optimality principles in biology. London: Butterworth; 1967.CrossRefGoogle Scholar
  73. 73.
    Scheel P, Ruge C, Schoning M. Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol. 2000;26:1261–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Schulz UG, Rothwell PM. Major variation in carotid bifurcation anatomy: a possible risk factor for plaque development? Stroke. 2001;32:2522–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Sheifer SE, Canes MR, Weinfurt KP, Arora UK, Mendekohn FO, Gersh BJ, Weissman NJ. Sex differences in coronary artery size assessed by intravascular ultrasound. Am Heart J. 2000;139:649–53.CrossRefPubMedGoogle Scholar
  76. 76.
    Skurnick JH, Aladjem M, Aviv A. Sex differences in pulse pressure trends with age are cross-cultural. Hypertension. 2010;55:40–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Smulyan H, Marchais SJ, Pannier B, Guerin AP, Safar ME, London GM. Influence of body height on pulsatile arterial hemodynamic data. J Am Coll Cardiol. 1998;31:1103–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Sonesson B, Hansen F, Stale H, Lanne T. Compliance and diameter in the human abdominal aorta.- the influence of age and sex. Eur J Vasc Surg. 1993;7:690–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, Mancia G, Nachev C, Palatini P, Parati G, Tuomilehto J, Webster J. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic hypertension in Europe Trial Investigators. JAMA. 1999;282:539–46.CrossRefPubMedGoogle Scholar
  80. 80.
    Stahl WR. Similarity analysis of biological systems. Persp Biol Med. 1963a;6:291.CrossRefGoogle Scholar
  81. 81.
    Stahl WR. The analysis of biological similarity. Adv Biol Med Phys. 1963b;9:356.Google Scholar
  82. 82.
    Stahl WR. Organ weights in primates and other mammals. Science. 1965;150:1039–42.CrossRefPubMedGoogle Scholar
  83. 83.
    Tarbell JM, Shi Z-D, Dunn J, Hanjoong J. Fluid mechanics, arterial disease, and gene expression. Annu Rev Fluid Mech. 2014;46:591–614.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Thompson DW. On growth and form. Cambridge: Cambridge University Press; 1917.CrossRefGoogle Scholar
  85. 85.
    Thubrikar MJ, Robicsec F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg. 1995;59:1594–603.CrossRefPubMedGoogle Scholar
  86. 86.
    Vouyouka AG, Kent KC. Arterial vascular disease in women. J Vasc Surg. 2007;46:1295–302.CrossRefPubMedGoogle Scholar
  87. 87.
    Waaler HT. Height, weight and mortality: the Norwegian experience. Acta Med Scand Suppl. 1984;679:1–56.PubMedGoogle Scholar
  88. 88.
    Wainwright SA. Axis and circumference. The cylindrical shape of plants and animals. Cambridge, MA: Harvard Univrsity Press; 1988.CrossRefGoogle Scholar
  89. 89.
    Weintraube WS, Wenger NK, Kosinski AS, Douglas Jr JS, Liberman HA, Morris DC, King SB III. Percutaneous transluminal angioplasty in women compared with men. J Am Coll Cardiol. 1994;24:81–90.CrossRefGoogle Scholar
  90. 90.
    West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Westerhof N, Bosman F, DeVries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 1969;2:121–43.CrossRefPubMedGoogle Scholar
  92. 92.
    White L, Haines H, Adams T. Cardiac output related to body weights in small mammals. Comp Biochem Physiol. 1968;27:559–65.CrossRefGoogle Scholar
  93. 93.
    Zanchetti A, Grassi G, Mancia G. When should antihypertensive drug treatment be initiated and to what levels should systolic blood pressure be lowered? A critical reappraisal. J Hypertens. 2009;27:923–34.CrossRefPubMedGoogle Scholar
  94. 94.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53:502–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations