Advertisement

Sex Differences in Autonomic Response to Exercise Testing in Patients with Brugada Syndrome

  • Mireia Calvo
  • Virginie Le Rolle
  • Daniel Romero
  • Nathalie Béhar
  • Pedro Gomis
  • Philippe Mabo
  • Alfredo Hernández
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Introduction: Cardiac events in patients with Brugada syndrome (BS) typically occur at rest and mainly during sleep, suggesting that changes in autonomic modulation play an important role in the arrhythmogenesis of the disease. Moreover, sex differences in clinical manifestations of BS have been reported, identifying male patients with worse prognosis. The aim of our work was to assess and compare, according to sex, autonomic response to exercise in a clinical series including 105 BS patients.

Method: Standard 12-lead electrocardiogram recordings were collected during a physical stress test divided into four phases: warm-up, incremental exercise, active recovery, and passive recovery. Spectral non-stationary heart rate variability indicators were extracted by means of a smoothed pseudo Wigner-Ville distribution approach that adapts frequency bands to respiratory information. These indicators were then averaged in non-overlapped windows of 1 min for each patient to compare groups at each minute of the physical stress test.

Results: From the last minute of warm-up and until the third minute of incremental exercise, asymptomatic male patients presented significantly greater low-frequency (LF) values (\( \overline{{\mathrm{LF}}^{WU2}} \): p = 0.015;\( \overline{{\mathrm{LF}}^{EX1}} \): p = 0.024; \( \overline{{\mathrm{LF}}^{EX2}} \): p = 0.011; \( \overline{{\mathrm{LF}}^{EX3}} \): p = 0.002) than asymptomatic females. Conversely, asymptomatic women showed increased vagal modulation during the first minutes of incremental exercise (\( \overline{{\mathrm{HF}}^{EX1}} \): p = 0.031; \( \overline{{\mathrm{HF}}^{EX2}} \): p = 0.001). However, no significant differences were observed between symptomatic male and female patients.

Conclusion: As previously reported in healthy subjects, enhanced parasympathetic and decreased sympathetic tones appear to be not only greater in women but also defensive during cardiac stress. Based on the results, asymptomatic patients presented same-sex tendencies. However, we observed that symptomatic males developed a more female-like autonomic modulation, probably related to a more protective autonomic response to exercise. These results could be a step forward toward the understanding of the autonomic function in BS along with a potential impact on risk stratification.

Keywords

Heart rate variability Time-frequency analysis Brugada syndrome Autonomic function Sex differences Exercise Arrhythmogenesis Parasympathetic system Cardioprotection 

References

  1. 1.
    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3 : a marker for sudden death in patients without demonstrable structural heart disease. Circulation. 1998;97(5):457–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Antzelevitch C. Heart Rhythm Society; European Heart Rhythm Association. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111(5):659–70.CrossRefGoogle Scholar
  4. 4.
    Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52(19):1567–73.CrossRefPubMedGoogle Scholar
  5. 5.
    Kies P, Wichter T, Schäfers M, Paul M, Schäfers KP, Eckardt L, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation. 2004;110(19):3017–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J. 1999;20(6):465–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Paul M, Meyborg M, Boknik P, Gergs U, Schmitz W, Breithardt G, et al. Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways. Pacing Clin Electrophysiol. 2011;34(9):1147–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, et al. Cardiac autonomic dysfunction in Brugada syndrome. Circulation. 2002;105(6):702–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24(6):1529–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol. 1982;53(6):1572–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65.CrossRefGoogle Scholar
  12. 12.
    Sala R, Malacarne M, Solaro N, Pagani M, Lucini D. A composite autonomic index as unitary metric for heart rate variability: a proof of concept. Eur J Clin Investig. 2017;47(3):241–9.CrossRefGoogle Scholar
  13. 13.
    Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation [Internet]. 1991;84(2):482–92. Available from: http://circ.ahajournals.org/content/84/2/482.abstract CrossRefGoogle Scholar
  14. 14.
    Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40(8):1531–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Fox SM 3rd, Haskell WL. Physical activity and the prevention of coronary heart disease. Bull N Y Acad Med. 1968;44(8):950–65.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dumont J, Hernandez AI, Carrault G. Improving ECG beats delineation with an evolutionary optimization process. IEEE Trans Biomed Eng. 2010;57(3):607–15.CrossRefGoogle Scholar
  17. 17.
    Orini M, Mainardi LT, Gil E, Laguna P, Bailón R. Dynamic assessment of spontaneous baroreflex sensitivity by means of time-frequency analysis using either RR or pulse interval variability. In: 2010 Annual international conference of the IEEE engineering in medicine and biology. 2010. pp 1630–1633.Google Scholar
  18. 18.
    Hlawatsch F, Boudreaux-Bartels GF. Linear and quadratic time-frequency signal representations. IEEE Signal Process Mag. 1992;9(2):21–67.CrossRefGoogle Scholar
  19. 19.
    Costa AH, Boudreau-Bartels GF. Design of time-frequency representations using a multiform, tiltable exponential kernel. IEEE Trans Signal Process. 1995;43(10):2283–301.CrossRefGoogle Scholar
  20. 20.
    Bailón R, Laguna P, Mainardi L, Sornmo L. Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In: Engineering in medicine and biology society, 2007 EMBS 2007 29th Annual international conference of the IEEE. 2007. pp 6674–6677.Google Scholar
  21. 21.
    Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, et al. Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol. 1986;13:507–10.Google Scholar
  22. 22.
    Kappus RM, Ranadive SM, Yan H, Lane-Cordova AD, Cook MD, Sun P, et al. Sex differences in autonomic function following maximal exercise. Biol Sex Differ [Internet]. 2015;6(1):28. Available from: http://www.bsd-journal.com/content/6/1/28 CrossRefGoogle Scholar
  23. 23.
    Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.CrossRefPubMedGoogle Scholar
  24. 24.
    Breuer HW, Skyschally A, Schulz R, Martin C, Wehr M, Heusch G. Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Heart [Internet]. 1993;70(2):144–9. Available from: http://heart.bmj.com/cgi/doi/10.1136/hrt.70.2.144 CrossRefGoogle Scholar
  25. 25.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation. 2016;133:e38–48.CrossRefGoogle Scholar
  26. 26.
    Minson CT, Halliwill JR, Young TM, Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation. 2000;101(8):862.CrossRefPubMedGoogle Scholar
  27. 27.
    Saleh TM, Connell BJ. Estrogen-induced autonomic effects are mediated by NMDA and GABAA receptors in the parabrachial nucleus. Brain Res. 2003;973(2):161–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Mohamed MK, El-Mas MM. Abdel-Rahman AA. Estrogen enhancement of baroreflex sensitivity is centrally mediated. Am J Phys. 1999;276(4 Pt 2):R1030–7.Google Scholar
  29. 29.
    Benjamin IJ, Christians E. Exercise, estrogen, and ischemic cardioprotection by heat shock protein 70. Circ Res. 2002;90(8):833–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Di Diego JM, Cordeiro JM, Goodrow RJ, Fish JM, Zygmunt AC, Pérez GJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation. 2002;106(15):2004–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Antzelevitch C. Androgens and male predominance of the Brugada syndrome phenotype. Pacing Clin Electrophysiol. 2003;26(7p1):1429–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Shimizu W, Matsuo K, Kokubo Y, Satomi K, Kurita T, Noda T, et al. Sex hormone and gender difference – role of testosterone on male predominance in Brugada syndrome. J Cardiovasc Electrophysiol. 2007;18(4):415–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Song M, Helguera G, Eghbali M, Zhu N, Zarei MM, Olcese R, et al. Remodeling of Kv4.3 Potassium Channel gene expression under the control of sex hormones. J Biol Chem. 2001;276(34):31883–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112(12):1701–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mireia Calvo
    • 1
    • 2
  • Virginie Le Rolle
    • 1
  • Daniel Romero
    • 1
  • Nathalie Béhar
    • 1
  • Pedro Gomis
    • 2
    • 3
  • Philippe Mabo
    • 1
  • Alfredo Hernández
    • 1
  1. 1.Univ Rennes, CHU Rennes, Inserm, LTSI – UMR 1099RennesFrance
  2. 2.ESAII Department, EUETIB, CREB, Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MálagaSpain

Personalised recommendations