Advertisement

Plus Lucis

  • Roland Adunka
  • Mary Virginia Orna
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Passing by Währingerstraße in Vienna, one encounters a gray, roughly triangular building block, the chemical, mathematical and physical institutes (in alphabetical order) of the University of Vienna. There is a simple monument in front of the entrance to Währingerstraße 38—a square with a stylized male figure and the words “Plus Lucis”—“more light.”

References

  1. 1.
    Komorek K (2011) Plus lucis. In Carl Freiherr Auer von Welsbach (1858–1929). Symposium anlässlich des 150. Geburtstages. Wien, 4. Juni 2008 (2011) Österreichischen Akademie der Wissenschaften, Wien, Austria, pp 45–49Google Scholar
  2. 2.
    Baumgartner E (1996) Carl Auer von Welsbach: a pioneer in the industrial application of rare earths. In Evans CH (ed) (1996) Episodes from the history of the rare earth elements. Kluwer, Dordrecht, The Netherlands, pp 113–129CrossRefGoogle Scholar
  3. 3.
    Thomson J (2003) The Scot who lit the world: The story of William Murdoch, the inventor of gas lighting. Janet Thomson, GlasgowGoogle Scholar
  4. 4.
    MacIsaac D, Kanner G, Anderson G (1999) Basic physics of the incandescent lamp (lightbulb). Phys Teach 37:520–525CrossRefGoogle Scholar
  5. 5.
    Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, pp 21–22Google Scholar
  6. 6.
    Brewster D (1820) On a singular luminous property of wood, &c., steeped in solutions of Lime and Magnesia. Edinb Phil J 3:343–344Google Scholar
  7. 7.
    Cruickshank A (1839) British Patent Specifications, No. 8141Google Scholar
  8. 8.
    Harvey EN (1957) A history of luminescence from the earliest times until 1900. The American Philosophical Society, Philadelphia, p viiGoogle Scholar
  9. 9.
    Mason DM (1967) Candoluminescence. Proc Am Chem Soc Div Fuel Chem 11(2):540–554. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/11_2_MIAMI2_04-67_0540.pdf. Last accessed 15 Jan 2018
  10. 10.
    Wood RW (1931) Selective thermal radiation of colored and pure fused quartz. Phys Rev 38:487CrossRefGoogle Scholar
  11. 11.
    Asano T, Suemitsu M, Hashimoto K, De Zoysa M, Shibahara T, Tsutsumi T, Noda S (2016) Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci Adv 2(12):e1600499.  https://doi.org/10.1126/sciadv.1600499CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64CrossRefPubMedGoogle Scholar
  13. 13.
    White WB (1990) Photoluminescence, candoluminescence, and radical recombination luminescence of minerals. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Washington, D.C., pp 118–134Google Scholar
  14. 14.
    Phillips ML (1928) Visible radiation characteristics of incandescent oxides. Phys Rev 32:832–839CrossRefGoogle Scholar
  15. 15.
    Ivey HF (1974) Candoluminescence and radical-excited luminescence. J Lumin 8:271–307CrossRefGoogle Scholar
  16. 16.
    Wolters W, Roslin J (1881) Vienna Patent No. 17,786, JuneGoogle Scholar
  17. 17.
    Gentsch W (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp 1–7 and 20–35Google Scholar
  18. 18.
    Gentsch W (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp 9–10Google Scholar
  19. 19.
    Jørgensen CK, Bill H, Reisfeld R (1981) Candoluminescence of rare earths. J Lumin 24(25):91–94CrossRefGoogle Scholar
  20. 20.
    Auer von Welsbach C (1901) On the history of the invention of the gas incandescent light. Lecture given at the 41st Annual General Meeting of the German Association of Gas and Water Professionals, Vienna. J Gasbeleucht Verw Beleuchtungsarten Wasserversorg 44:661–664Google Scholar
  21. 21.
    Auer von Welsbach C (1902) Chem News 85:254–256Google Scholar
  22. 22.
    Welsbach CA (1885) Austrian patent, 27 October; (1889) US399174A: Incandescent DeviceGoogle Scholar
  23. 23.
    D’Ans J (1931) Carl Freiherr Auer von Welsbach. Ber Deutsch Chem Ges A 64(5):63–64Google Scholar
  24. 24.
    Palaz A (1894) A treatise on industrial photometry with special attention to electric lighting. Van Nostrand, New York, pp 135–139Google Scholar
  25. 25.
    Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, pp 28–35Google Scholar
  26. 26.
    Gentsch W (1896) The incandescent gas light: its history, character and operation. Progressive Age Publishing Co., New York, pp 87–107Google Scholar
  27. 27.
    Jørgensen CK (1970) Electron transfer spectra. Prog Inorg Chem 12:101–158Google Scholar
  28. 28.
    Jørgensen CK (1976) Narrow band thermoluminescence (candoluminescence) of rare earths in Auer mantles. Struct Bond 25:1–21CrossRefGoogle Scholar
  29. 29.
    Nitze HBC (1896) The monazite deposits of North and South Carolina. In Gentsch W (1896) The incandescent gas light: Its history , character and operation. Progressive Age Publishing Co., New York, pp. 77–81Google Scholar
  30. 30.
    Gentsch (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp. 77–81Google Scholar
  31. 31.
    Habashi F (2000) Robert Bunsen and the rare earths industry. In: Bautista RG, Mishna B (eds) Rare earths and actinides: science, technology and applications IV. The Minerals, Metals and Materials Society, Pittsburgh, pp 1–10Google Scholar
  32. 32.
    Ives HE, Kingsbury EF, Karrer E (1918) Physical study of the Welsbach mantle. J Franklin Inst 186: 401–438 and 585–625Google Scholar
  33. 33.
    Barrows GS (1910) The work of Dr. C. A. von Welsbach in the field of artificial illuminants. Illum Eng 3:499–502Google Scholar
  34. 34.
    Stock J (1991) Carl Auer von Welsbach and the development of incandescent gas lighting. J Chem Educ 68:801–803CrossRefGoogle Scholar
  35. 35.
    Adunka R (2015) Carl Auer von Welsbach: Entdecker, Erfinder, Firmengründer. Verlag des Kärntner Landesarchivs, Klagenfurt, pp 18–36Google Scholar
  36. 36.
    Report of the Franklin Institute (1900) The Welsbach light. Science 12:951–956CrossRefGoogle Scholar
  37. 37.
    Jørgensen CK (1975) Narrow band thermoluminescence of Auer mantles containing neodymium, holmium, erbium or thulium in mixed oxides. Chem Phys Lett 34:14–16CrossRefGoogle Scholar
  38. 38.
    Rubens H (1899) Über die Reststrahlen des Fluβpathes. Ann Phys 305:576–588CrossRefGoogle Scholar
  39. 39.
    Rubens H, Aschkinass E (1899) Isolirung langwelliger Wärmestrahlen durch Quarzprismen. Ann Phys 303:459–466CrossRefGoogle Scholar
  40. 40.
    Kangro H (1976) Early history of Planck’s radiation law. Taylor & Francis, New York, p 165, 183Google Scholar
  41. 41.
    Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, p 40Google Scholar
  42. 42.
    Feldhaus FM (1928) Zum 70. Geburtstag von Auer von Welsbach. Chem-Ztg 52:689–690 as quoted in Weeks ME (1932) The discovery of the elements. XVI. The rare earth elements. J Chem Educ 9:1751–1773Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Auer von Welsbach-MuseumAlthofenAustria
  2. 2.Department of ChemistryCollege of New RochelleNew RochelleUSA

Personalised recommendations