Bambara Groundnut is a Climate-Resilient Crop: How Could a Drought-Tolerant and Nutritious Legume Improve Community Resilience in the Face of Climate Change?

  • Aryo FeldmanEmail author
  • Wai Kuan Ho
  • Festo Massawe
  • Sean Mayes


Bambara groundnut (Vigna subterranea (L.) Verdc.; is a crop similar in morphology and growth habit to groundnut (Arachis hypogaea L.). It was also historically largely displaced by groundnut upon the latter’s introduction to sub-Saharan Africa from Latin America (Sprent et al. 2010). Bambara groundnut nevertheless still holds local importance in West Africa, East Africa, Southern Africa and even Southeast Asia (Fig. 8.1). It is held in high esteem for its nutritional qualities by the consumer and its drought tolerance by the farmer (Tables 8.1, 8.2, and 8.3; Fig. 8.2). It could therefore be promoted in areas that are currently drought prone as well as in areas where climate change projections show an increased frequency and intensity in droughts as well as unpredictable rainfall patterns.

Supplementary material

Video 8.1

This video highlights international, crop breeding and field evaluation of a drought-tolerant, tropical legume, bambara groundnut. First, you can see the experimental field site in an ex-palm oil estate in Crops For the Future, Malaysia, which coordinates multi-site trials around West and Southern Africa, and Southeast Asia. Seeds are harvested from pods that bury themselves in the soil as a mechanism of stress avoidance. The high level of diversity in the crop’s seeds and plants are characterised in terms of morphology, physiology, nutrition and DNA. The crop is an important source of non-animal protein in low-income countries, as well as providing other key nutritional properties like essential fatty acids. The crop is underutilised in most respects but it is currently attracting high-level scientific research, even outside of the Tropics, due to its unique plant, farm and food traits. These have led to it being dubbed as a ‘crop for the future’ (MP4 152,096 kb)


  1. Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., Costa de Oliveira, A., Cseke, L. J., Dempewolf, H., De Pace, C., Edwards, D., Gepts, P., Greenland, A., Hall, A. E., Henry, R., Hori, K., Howe, G. T., Hughes, S., Humphreys, M., Lightfoot, D., Marshall, A., Mayes, S., Nguyen, H. T., Ogbonnaya, F. C., Ortiz, R., Paterson, A. H., Tuberosa, R., Valliyodan, B., Varshney, R. K., & Yano, M. (2016). Global agricultural intensification during climate change: A role for genomics. Plant Biotechnology Journal, 14, 1095–1098.CrossRefGoogle Scholar
  2. Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., Olayide, O. E., & Awai, P. E. (2015). Technical efficiency of Bambara groundnut production in Northern Ghana. University of Development Studies International Journal of Development, 2(2), 37–49.Google Scholar
  3. Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., Olayide, O. E., Mayes, S., Feldman, A., & Azman, H. R. (2016a). Adoption of Bambara groundnut production and its effects on farmers’ welfare in Northern Ghana. African Journal of Agricultural Research, 11(7), 583–594.CrossRefGoogle Scholar
  4. Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., & Mayes, S. (2016b). Use patterns and perceptions about the attributes of Bambara groundnut (Vigna subterranea (L.) Verdc.) in Northern Ghana. Ghana Journal of Science, Technology and Development, 4(2), 56–71.Google Scholar
  5. Ahmad, N. S., Redjeki, E. S., Ho, W. K., Aliyu, S., Mayes, K., Massawe, F., Kilian, A., & Mayes, S. (2016). Construction of a genetic linkage map and QTL analysis in Bambara groundnut. Genome, 59(7), 459–472.CrossRefGoogle Scholar
  6. Akande, K. E., Abubakar, M. M., Adegbola, T. A., Bogoro, S. E., Doma, U. D., & Fabiyi, E. F. (2009). Nutrient compostion and uses of Bambara groundnut (Vignia subterranea (L.) Verdcourt). Continental Journal of Food Science and Technology, 3, 8–13.Google Scholar
  7. Alozie, Y. E., Iyam, M. A., Lawal, O., Udofia, U., & Ani, I. F. (2009). Utilization of Bambara groundnut flour blends in bread production. Journal of Food Technology, 7(4), 111–114.Google Scholar
  8. Amarteifio, J. O., & Moholo, D. (1998). The chemical composition of four legumes consumed in Botswana. Journal of Food Composition and Analysis, 11, 329–332.CrossRefGoogle Scholar
  9. AMCHARTS.COM. (n.d.). Retrieved July 18, 2017, from
  10. Azam-Ali, S. N., Sesay, A., Karikari, S. K., Massawe, F. J., Aguilar-Manjarrez, J., Bannayan, M., & Hampson, K. J. (2001). Assessing the potential of an underutilized crop – A case study using Bambara groundnut. Experimental Agriculture, 37, 433–472.CrossRefGoogle Scholar
  11. BamNetwork. (n.d.). Retrieved July 18, 2017, from
  12. Bamshaiye, O. M., Adegbola, J. A., & Bamishaiye, E. I. (2011). Bambara groundnut: An Under-Utilized Nut in Africa. Advances in agricultural biotechnology, 1, 60–72.Google Scholar
  13. Berchie, J. N., Adu-Dapaah, H. K., Dankyi, A. A., Plahar, W. A., Nelson-Quartey, F., Haleegoah, J., Asafu-Agyei, J. N., & Addo, J. K. (2010). Practices and constraints in Bambara groundnuts production, marketing and consumption in the Brong Ahafo and Upper-East regions of Ghana. Journal of Agronomy, 9(3), 111–118.CrossRefGoogle Scholar
  14. Brink, M. (1997). Rates of progress towards flowering and podding in Bambara groundnut (Vigna subterranea) as a function of temperature and photoperiod. Annals of Botany, 80(4), 505–513.CrossRefGoogle Scholar
  15. Brough, S. H., Azam-Ali, S. N., & Taylor, A. J. (1993). The potential of Bambara groundnut (Vigna subterranea) in vegetable milk production and basic protein functionality systems. Food Chemistry, 47, 277–283.CrossRefGoogle Scholar
  16. Burlingame, B., & Dernini, S. (Eds.). (2012). Sustainable diets and biodiversity - Directions and solutions for policy, research and action. Proceedings of the International Scientific Symposium – Biodiversity and Sustainable Diets United Against Hunger, E-ISBN 978-92-5-107288-2.Google Scholar
  17. Chai, H. H., Massawe, F., & Mayes, S. (2016). Effects of mild drought stress on the morpho-physiological characteristics of a Bambara groundnut segregating population. Euphytica, 208(2), 225–236.CrossRefGoogle Scholar
  18. Chai, H. H., Ho, W. K., Graham, N., May, S., Massawe, F., & Mayes, S. (2017). A cross-species gene expression marker-based genetic map and QTL analysis in Bambara groundnut. Genes, 8, e84. Scholar
  19. Daryanto, S., Wang, L., & Jacinthe, P.-A. (2015). Global synthesis of drought effects on food legume production. PLoS One, 10(6), e0127401.CrossRefGoogle Scholar
  20. FAOSTAT. (n.d.). Food and Agriculture Organization of the United Nations Statistics Division. Retrieved July 18, 2017, from
  21. Hillocks, R. J., Bennett, C., & Mponda, O. M. (2012). Bambara nut: A review of utilisation, market potential and crop improvement. African Crop Science Journal, 20(1), 1–16.Google Scholar
  22. Hiremath, P. J., Kumar, A., Penmetsa, R. V., Farmer, A., Schlueter, J. A., Chamarthi, S. K., Whaley, A. M., Carrasquilla-Garcia, N., Gaur, P. M., Upadhyaya, H. D., Polavarapu, B. K. K., Shah, T. M., Cook, D. R., & Varshney, R. K. (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal, 10(6), 716–732.CrossRefGoogle Scholar
  23. Ho, W. K., Muchugi, A., Muthemba, S., Kariba, R., Mavenkeni, B. O., Hendre, P., Song, B., Van Deynze, A., Massawe, F. J., & Mayes, S. (2016). Use of microsatellite markers for the assessment of Bambara groundnut breeding system and varietal purity before genome sequencing. Genome, 59(6), 427–431.CrossRefGoogle Scholar
  24. Ho, W. K., Chai, W. K., Kendabie, P., Ahmad, N. S., Jani, J., Massawe, K. A., & Mayes, S. (2017). Integrating genetic maps in Bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. BMC Genomics, 18, 192. Scholar
  25. Ijarotimi, O. S., & Keshinro, O. O. (2012). Formulation and nutritional quality of infant formula produced from germinated popcorn, Bambara groundnut and African locust bean flour. Journal of Microbiology, Biotechnology and Food Sciences, 1(6), 1358–1388.Google Scholar
  26. Intergovernmental Panel on Climate Change. (2014). Fifth Assessment Report (AR5) - WGII climate change 2014: Impacts, adaptation, and vulnerability. Retrieved December 31, 2016, from
  27. Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and Bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86, 91–99.CrossRefGoogle Scholar
  28. Karikari, S. K., & Tabona, T. T. (2004). Constitutive traits and selective indices of Bambara groundnut (Vigna subterranea (L) Verdc) landraces for drought tolerance under Botswana conditions. Physics and Chemistry of the Earth, 29, 1029–1034.CrossRefGoogle Scholar
  29. Karunaratne, A. S., Azam-Ali, S. N., Izzi, G., & Steduto, P. (2011). Calibration and validation of FAO-Aquacrop Model for irrigated and water deficient Bambara groundnut. Experimental Agriculture, 47(3), 509–527.CrossRefGoogle Scholar
  30. Kendabie, P., Massawe, F., & Mayes, S. (2015). Developing genetic mapping resources from landrace-derived genotypes that differ for photoperiod sensitivity in Bambara groundnut (Vigna subterranea L.). Aspects of Applied Biology, 124, 1–8.Google Scholar
  31. Kew Science. (n.d.). Plants of the world online. Retrieved July 18, 2017, from
  32. Kouassi, N. J., & Zorobi, I. A. (2010). Effect of sowing density and seedbed type on yield and yield components in Bambara groundnut (Vigna subterranea) in woodland savannas of Cote D’Ivoire. Experimental Agriculture, 46(1), 99–110.CrossRefGoogle Scholar
  33. Linnemann, A. R., Westphal, E., & Wessel, M. (1995). Photoperiod regulation of development and growth in Bambara groundnut (Vigna subterranea). Field Crops Research, 40(1), 39–47.CrossRefGoogle Scholar
  34. Mabhaudhi, T., & Modi, A. T. (2013). Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. South African Journal of Plant and Soil, 30(2), 69–79.CrossRefGoogle Scholar
  35. Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2013). Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea L. Verdc) landrace to imposed water stress: II. Rain shelter conditions. Water SA, 39(2), 191–198.Google Scholar
  36. Mahala, A. G., & Mohammed, A. A. A. (2010). Nutritive evaluation of Bambara groundnut (Vigna subterranean) pods. Seeds and Hull as Animal Feeds, 6(5), 383–386.Google Scholar
  37. Makanda, I., Tongoona, P., Madamba, R., Icishahayo, D., & Derera, J. (2009). Evaluation of Bambara groundnut varieties for off-season production in Zimbabwe. African Crop Science Journal, 16(3), 175–183.Google Scholar
  38. Massawe, F. J., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365–368.CrossRefGoogle Scholar
  39. Mayes, S., Massawe, F. J., Alderson, P. G., Roberts, J. A., Azam-Ali, S. N., & Hermann, M. (2012). The potential for underutilized crops to improve security of food production. Journal of Experimental Botany, 63(3), 1075–1079.CrossRefGoogle Scholar
  40. Mayes, S., Ho, W. K., Kendabie, P., Chai, H. H., Aliyu, S., Feldman, A., Halimi, R. A., Massawe, F., & Azam-Ali, S. (2015a). Applying molecular genetics to underutilised species – Problems and opportunities. Malaysian Applied Biology, 44(4), 1–9.Google Scholar
  41. Mayes, S., Kendabie, P., Ho, W. K., & Massawe, F. (2015b). Increasing the contribution that underutilised crops could make to food security – Bambara groundnut as an example. Aspects of Applied Biology, 124, 1–8.Google Scholar
  42. Mazahib, A. M., Nuha, M. O., Salawa, I. S., & Babiker, E. E. (2013). Some nutritional attributes of Bambara groundnut as influenced by domestic processing. International Food Research Journal, 20(3), 1165–1171.Google Scholar
  43. Molosiwa, O. O., Aliyu, S., Stadler, F., Mayes, K., Massawe, F., Kilian, A., & Mayes, S. (2015). SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genetic Resources and Crop Evolution, 62, 1225. Scholar
  44. Mubaiwa, J., Fogliano, V., Chidewe, C., & Linnemann, A. R. (2017). Hard-to-cook phenomenon in Bambara groundnut (Vigna subterranea (L.) Verdc.) processing: Options to improve its role in providing food security. Food Reviews International, 33, 167. Scholar
  45. Mumuni, E., Kaliannan, M., & O’Reilly, P. (2016). Approaches for scientific collaboration and interactions in complex research projects under disciplinary influence. The Journal of Developing Areas, 50(5), 383–391.CrossRefGoogle Scholar
  46. Muñoz-Amatriaín, M., Mirebrahim, H., Xu, P., Wanamaker, S. I., Luo, M., Alhakami, H., Alpert, M., Atokple, I., Batieno, B. J., Boukar, O., Bozdag, S., Cisse, N., Drabo, I., Ehlers, J. D., Farmer, A., Fatokun, C., Gu, Y. Q., Guo, Y.-N., Huynh, B.-L., Jackson, S. A., Kusi, F., Lawley, C. T., Lucas, M. R., Ma, Y., Timko, M. P., Wu, J., You, F., Barkley, N. A., Roberts, P. A., Lonardi, S., & Close, T. J. (2017). Genome resources for climate-resilient cowpea, an essential crop for food security. The Plant Journal, 89, 1042–1054. Scholar
  47. Mwale, S. S., Azam-Ali, S. N., & Massawe, F. J. (2007a). Growth and development of Bambara groundnut (Vigna subterranea) in response to soil moisture: 1. Dry matter and yield. European Journal of Agronomy, 26(4), 345–353.CrossRefGoogle Scholar
  48. Mwale, S. S., Azam-Ali, S. N., & Massawe, F. J. (2007b). Growth and development of Bambara groundnut (Vigna subterranea) in response to soil moisture: 2. Resource capture and conversion. European Journal of Agronomy, 26(4), 354–362.CrossRefGoogle Scholar
  49. Nyemba, R. C., & Dakora, F. D. (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biology and Fertility of Soils, 46(5), 461–470.CrossRefGoogle Scholar
  50. Ojimelukwe, P. C. (1998). Cooking characteristics of four cultivars of Bambara groundnuts seeds and starch isolate. Journal of Food Biochemistry, 23, 109–117.CrossRefGoogle Scholar
  51. Olukolu, B. A., Mayes, S., Stadler, F., Ng, N. Q., Fawole, I., Dominique, D., Azam-Ali, S. N., Abbott, A. G., & Kole, C. (2012). Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genetic Resources and Crop Evolution, 59, 347–358.CrossRefGoogle Scholar
  52. Ouedraogo, M., Ouedraogo, J. T., Tignere, J. B., Balma, D., Dabire, C. B., & Konate, G. (2008). Characterization and evaluation of accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from Burkina Faso. Sciences & Nature, 5(2), 191–197.CrossRefGoogle Scholar
  53. PROTA. (n.d.). Prota 1: Cereals and pulses/Céréales et légumes secs. Retrieved July 18, 2017, from
  54. Pungulani, L., Kadyampakeni, D., Nsapato, L., & Kachapila, M. (2012). Selection of high yielding and farmers’ preferred genotypes of Bambara Nut (Vigna subterranea (L.) Verdc) in Malawi. American Journal of Plant Sciences, 3, 1802–1808.CrossRefGoogle Scholar
  55. Somta, P., Chankaew, S., Rungnoi, O., & Srinives, P. (2011). Genetic diversity of the Bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers. Genome, 54, 898–910.CrossRefGoogle Scholar
  56. Sprent, J. I., Odee, D. W., & Dakora, F. D. (2010). African legumes: A vital but under-utilized resource. Journal of Experimental Botany, 61(5), 1257–1265.CrossRefGoogle Scholar
  57. Touré, Y., Koné, M., Kouakou Tanoh, H., & Koné, D. (2012). Agromorphological and phenological variability of 10 Bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] landraces cultivated in the Ivory Coast. Tropicultura, 30(4), 216–221.Google Scholar
  58. United States Department of Agriculture. (n.d.). National nutrient database for standard reference release 28. Retrieved December 27, 2016, from
  59. Varshney, R. K. (2016). Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Science, 242, 98–107.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aryo Feldman
    • 1
    Email author
  • Wai Kuan Ho
    • 2
  • Festo Massawe
    • 3
  • Sean Mayes
    • 4
    • 5
  1. 1.Crops For the FutureSemenyihMalaysia
  2. 2.Crops For the FutureUniversity of Nottingham Malaysia CampusSemenyihMalaysia
  3. 3.Faculty of ScienceUniversity of Nottingham Malaysia CampusSemenyihMalaysia
  4. 4.Crop Genetics, South Labs, Plant and Crop Sciences, Biosciences, Sutton Bonington CampusUniversity of NottinghamLeicestershireUK
  5. 5.Biotechnology, Breeding and Seed SystemsCrops For the FutureSemenyihMalaysia

Personalised recommendations