Advertisement

Climate Smart Crops: Flood and Drought-Tolerant Crops

  • Camila Pegoraro
  • Carlos Busanello
  • Luciano Carlos da Maia
  • Antonio Costa de Oliveira
Chapter

Abstract

The increasing demands of world’s population make it mandatory to increase food production. Global climate changes currently threaten this goal, through many adverse conditions, such as water stress by excess (waterlogging or flooding) or scarcity (drought). One alternative to overcome this challenge is the development of stress resilient crops, since an increase in the number of affected areas and the intensity of stress occurring in those, is happening as a consequence of climate changes. Molecular, physiological and epigenetic changes may be key to achieve tolerance to these stresses and are discussed in this chapter.

Keywords

Genetic variability Transgenic Gene expression Epigenetic 

Notes

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS) for research funding and scholarships.

References

  1. Ahmed, F., Rafii, M. Y., Ismail, M. R., Juraimi, A. S., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013, 963525.  https://doi.org/10.1155/2013/963525.CrossRefGoogle Scholar
  2. Akimoto, K., Katakami, H., Kim, H.-J., Ogawa, E., Sano, C. M., Wada, Y., & Sano, H. (2007). Epigenetic inheritance in rice plants. Annals of Botany, 100, 205–217.  https://doi.org/10.1093/aob/mcm110.CrossRefGoogle Scholar
  3. Bailey-Serres, J., & Voesenek, L. A. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313–339.  https://doi.org/10.1146/annurev.arplant.59.032607.092752.CrossRefGoogle Scholar
  4. Banti, V., Mafessoni, F., Loreti, E., Alpi, A., & Perata, P. (2010). The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in arabidopsis. Plant Physiology, 152, 1471–1483.  https://doi.org/10.1104/pp.109.149815.CrossRefGoogle Scholar
  5. Barbosa, E. G. G., Leite, J. P., Marin, S. R. R., Marinho, J. P., Carvalho, J. F. C., Fuganti-Pagliarini, R., et al. (2013). Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Molecular Biology Reporter, 31, 719–730.  https://doi.org/10.1007/s11105-012-0541-4.CrossRefGoogle Scholar
  6. Belamkar, V., Weeks, N. T., Bharti, A. K., Farmer, A. D., Graham, M. A., & Cannon, S. B. (2014). Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics, 15, 950.  https://doi.org/10.1186/1471-2164-15-950.CrossRefGoogle Scholar
  7. Bond, D. M., Wilson, I. W., Dennis, E. S., Pogson, B. J., & Jean Finnegan, E. (2009). Vernalization insensitive 3 (VIN3) is required for the response of Arabidopsis thaliana seedlings exposed to low oxygen conditions. The Plant Journal, 59, 576–587.  https://doi.org/10.1111/j.1365-313X.2009.03891.x.CrossRefGoogle Scholar
  8. Boutraa, T., Akhkha, A., Al-Shoaibi, A. A., & Alhejeli, A. M. (2010). Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for Science, 3, 39–48.  https://doi.org/10.1016/S1658-3655(12)60019-3.CrossRefGoogle Scholar
  9. Calore, F., & Fabbri, M. (2012). MicroRNAs and cancer. The Atlas of Genetics and Cytogenetics in Oncology and Haematology, 16, 51–59.  https://doi.org/10.4267/2042/47272.CrossRefGoogle Scholar
  10. Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., & Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta, 1819, 120–128.  https://doi.org/10.1016/j.bbagrm.2011.09.002.CrossRefGoogle Scholar
  11. Chinnusamy, V., & Zhu, J.-K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12, 133–139.  https://doi.org/10.1016/j.pbi.2008.12.006.CrossRefGoogle Scholar
  12. Delgado, J. M., Merz, B., & Apel, H. (2014). Projecting flood hazard under climate change: An alternative approach to model chains. Natural Hazards and Earth System Sciences, 14, 1579–1589.  https://doi.org/10.5194/nhess-14-1579-2014.CrossRefGoogle Scholar
  13. Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nature Communications, 3, 740.  https://doi.org/10.1038/ncomms1732.CrossRefGoogle Scholar
  14. Fang, H., Liu, X., Thorn, G., Duan, J., & Tian, L. (2014a). Expression analysis of histone acetyltransferases in rice under drought stress. Biochemical and Biophysical Research Communications, 443, 400–405.  https://doi.org/10.1016/j.bbrc.2013.11.102.CrossRefGoogle Scholar
  15. Fang, Y., Xie, K., & Xiong, L. (2014b). Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 65, 2119–2135.  https://doi.org/10.1093/jxb/eru072.CrossRefGoogle Scholar
  16. Ferdous, J., Hussain, S. S., & Shi, B. J. (2015). Role of microRNAs in plant drought tolerance. Plant Biotechnology Journal, 13, 293–305.  https://doi.org/10.1111/pbi.12318.CrossRefGoogle Scholar
  17. Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6, 978.  https://doi.org/10.3389/fpls.2015.00978.CrossRefGoogle Scholar
  18. Garg, R., Narayana Chevala, V., Shankar, R., & Jain, M. (2015). Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Scientific Reports, 5, 14922.  https://doi.org/10.1038/srep14922.CrossRefGoogle Scholar
  19. Guerra, D., Crosatti, C., Khoshro, H. H., Mastrangelo, A. M., Mica, E., & Mazzucotelli, E. (2015). Post-transcriptional and post-translational regulations of drought and heat response in plants: A spider’s web of mechanisms. Frontiers in Plant Science, 6, 57.  https://doi.org/10.3389/fpls.2015.00057.CrossRefGoogle Scholar
  20. Guo, M., Liu, J.-H., Ma, X., Luo, D.-X., Gong, Z.-H., & Lu, M.-H. (2016). The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 7, 114.  https://doi.org/10.3389/fpls.2016.00114.CrossRefGoogle Scholar
  21. Hattori, Y., Nagai, K., Furukawa, S., Song, X.-J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., & Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026–1030.  https://doi.org/10.1038/nature08258.CrossRefGoogle Scholar
  22. Hohn, T., Corsten, S., Rieke, S., Müller, M., & Rothnie, H. (1996). Methylation of coding region alone inhibits gene expression in plant protoplasts. Proceedings of the National Academy of Sciences of the United States of America, 93, 8334–8339.CrossRefGoogle Scholar
  23. Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105.Google Scholar
  24. Ji, X., Nie, X., Liu, Y., Zheng, L., Zhao, H., Zhang, B., Huo, L., & Wang, Y. (2015). A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiology, 36, 193–207.  https://doi.org/10.1093/treephys/tpv139.CrossRefGoogle Scholar
  25. Kakutani, T. (2002). Epi-alleles in plants: Inheritance of epigenetic information over generations. Plant and Cell Physiology, 43, 1106–1111.  https://doi.org/10.1093/pcp/pcf131.CrossRefGoogle Scholar
  26. Kasuga, M. I., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17, 287–291.  https://doi.org/10.1038/7036.CrossRefGoogle Scholar
  27. Kende, H., Van Der Knaap, E., & Cho, H. (1998). Deepwater rice: A model plant to study stem elongation. Plant Physiology, 118, 1105–1110.  https://doi.org/10.1104/pp.118.4.1105.CrossRefGoogle Scholar
  28. Kim, J. M., Sasaki, T., Ueda, M., Sako, K., & Seki, M. (2015). Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science, 6, 114.  https://doi.org/10.3389/fpls.2015.00114.CrossRefGoogle Scholar
  29. Kim, J. M., To, T. K., Ishida, J., Morosawa, T., Kawashima, M., Matsui, A., Toyoda, T., Kimura, H., Shinozaki, K., & Seki, M. (2008). Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiology, 49, 1580–1588.  https://doi.org/10.1093/pcp/pcn133.CrossRefGoogle Scholar
  30. King, J., Grewal, S., Yang, C., Hubbart, S., Scholefield, D., Ashling, S., Edwards, K. J., Allen, A. M., Burridge, A., Bloor, C., Davassi, A., da Silva, G. J., Chalmers, K., & King, I. P. (2017). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnology, 15, 217–226.  https://doi.org/10.1111/pbi.12606.CrossRefGoogle Scholar
  31. Kudahettige, N. P., Pucciariello, C., Parlanti, S., Alpi, A., & Perata, P. (2011). Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biology, 13, 611–619.  https://doi.org/10.1111/j.1438-8677.2010.00415.x.CrossRefGoogle Scholar
  32. Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., Ji, L., Pan, Z., Cao, X., Mo, B., Zhang, F., & Raikhel, N. (2013). MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell, 153, 562–574.  https://doi.org/10.1016/j.cell.2013.04.005.CrossRefGoogle Scholar
  33. Locatelli, S., Piatti, P., Motto, M., & Rossi, V. (2009). Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. The Plant Cell, 21, 1410–1427.  https://doi.org/10.1105/tpc.109.067256.CrossRefGoogle Scholar
  34. Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., Li, J., Tran, L. S., & Qin, F. (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 6, 8326.  https://doi.org/10.1038/ncomms9326.CrossRefGoogle Scholar
  35. Mastrangelo, A. M., Marone, D., Laidò, G., De Leonardis, A. M., & De Vita, P. (2012). Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Science, 185-186, 40–49.  https://doi.org/10.1016/j.plantsci.2011.09.006.CrossRefGoogle Scholar
  36. Medvedeva, Y. A., Khamis, A. M., Kulakovskiy, I. V., Ba-Alawi, W., Bhuyan, M. S. I., Kawaji, H., Lassmann, T., Harbers, M., Forrest, A. R. R., & Bajic, V. B. (2014). Effects of cytosine methylation on transcription factor binding sites. BMC Genomics, 15, 119.  https://doi.org/10.1186/1471-2164-15-119.CrossRefGoogle Scholar
  37. Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature, 16, 237–251.  https://doi.org/10.1038/nrg3901.CrossRefGoogle Scholar
  38. Misra, A. K. (2014). Climate change and challenges of water and food security. I. International Journal of Sustainable Built Environment, 3, 153–165.  https://doi.org/10.1016/j.ijsbe.2014.04.006.CrossRefGoogle Scholar
  39. Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2010). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61, 165–177.  https://doi.org/10.1093/jxb/erp296.CrossRefGoogle Scholar
  40. Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5, 170.  https://doi.org/10.3389/fpls.2014.00170.CrossRefGoogle Scholar
  41. Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 2.  https://doi.org/10.1186/1939-8433-5-2.CrossRefGoogle Scholar
  42. Nogoy, F. M., Song, J. Y., Ouk, S., Rahimi, S., Kwon, S. W., Kang, K. K., & Cho, Y. G. (2016). Current applicable DNA markers for marker assisted breeding in abiotic and biotic stress tolerance in rice (Oryza sativa L.). Plant Breeding and Biotechnology, 4, 271–284.  https://doi.org/10.9787/PBB.2016.4.3.271.CrossRefGoogle Scholar
  43. Oh, S., Song, S. I., Kim, Y. S., Jang, H., Kim, S. Y., Kim, M., Kim, Y., Nahm, B. H., Kim, J., Bioscience, D., & KS, O. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138, 341–351.  https://doi.org/10.1104/pp.104.059147.CrossRefGoogle Scholar
  44. Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86.  https://doi.org/10.3389/fpls.2014.00086.CrossRefGoogle Scholar
  45. Peng, H., & Zhang, J. (2009). Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Progress in Natural Science, 19, 1037–1045.  https://doi.org/10.1016/j.pnsc.2008.10.014.CrossRefGoogle Scholar
  46. Remy, E., Cabrito, T. R., Baster, P., Batista, R. A., Teixeira, M. C., Friml, J., Sá-Correia, I., & Duque, P. (2013). A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell, 25, 901–926.  https://doi.org/10.1105/tpc.113.110353.CrossRefGoogle Scholar
  47. Roy, S. (2015). Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior, 11, e1117723.  https://doi.org/10.1080/15592324.2015.CrossRefGoogle Scholar
  48. Sakamoto, H., Nakagawara, Y., & Oguri, S. (2013). The expression of a novel gene encoding an ankyrin-repeat protein, DRA1, is regulated by drought-responsive alternative splicing. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7, 1120–1123.Google Scholar
  49. Setter, T. L., & Laureles, E. V. (1996). The beneficial effect of reduced elongation growth on submergence tolerance of rice. Journal of Experimental Botany, 47, 1551–1559.  https://doi.org/10.1093/jxb/47.10.1551.CrossRefGoogle Scholar
  50. Shamsudin, N. A. A., Swamy, B. P. M., Ratnam, W., Cruz, M. T. S., Sandhu, N., Raman, A. K., & Kumar, A. (2016). Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice, 9, 21.  https://doi.org/10.1186/s12284-016-0093-6.CrossRefGoogle Scholar
  51. Shao, H., Wang, H., & Tang, X. (2015). NAC transcription factors in plant multiple abiotic stress responses: Progress and prospects. Frontiers in Plant Science, 6, 902.  https://doi.org/10.3389/fpls.2015.00902.CrossRefGoogle Scholar
  52. Shao, H.-B., Chu, L.-Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., & Shao, M.-A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants - Biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, 29, 131–151.  https://doi.org/10.1080/07388550902869792.CrossRefGoogle Scholar
  53. Shiono, K., Ogawa, S., Yamazaki, S., Isoda, H., Fujimura, T., Nakazono, M., & Colmer, T. D. (2011). Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Annals of Botany, 107, 89–99.  https://doi.org/10.1093/aob/mcq221.CrossRefGoogle Scholar
  54. Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., & Tuberosa, R. (2011). Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 11, 4.  https://doi.org/10.1186/1471-2229-11-4.CrossRefGoogle Scholar
  55. Singh, N., Dang, T. T. M., Vergara, G. V., Mani, D., Sanchez, D., Endang, C. N. N., Merlyn, M. S., Mae, E., Ismail, T. A. M., Mackill, D. J., & Heuer, S. (2010). Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theoretical and Applied Genetics, 8, 1441–1453.  https://doi.org/10.1007/s00122-010-1400-z.CrossRefGoogle Scholar
  56. Sornaraj, P., Luang, S., Lopato, S., & Hrmova, M. (2015). Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta, 1860, 46–56.  https://doi.org/10.1016/j.bbagen.2015.10.014.CrossRefGoogle Scholar
  57. Thatcher, S. R., Danilevskaya, O. N., Meng, X., Beatty, M., Zastrow-Hayes, G., Harris, C., Van Allen, B., Habben, J., & Li, B. (2016). Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiology, 170, 586–599.  https://doi.org/10.1104/pp.15.01267.CrossRefGoogle Scholar
  58. To, T. K., & Kim, J. M. (2014). Epigenetic regulation of gene responsiveness in Arabidopsis. Frontiers in Plant Science, 4, 548.  https://doi.org/10.3389/fpls.2013.00548.CrossRefGoogle Scholar
  59. Tsuji, H., Saika, H., Tsutsumi, N., Hira, A., & Nakazono, M. (2006). Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant and Cell Physiology, 47, 995–1003.  https://doi.org/10.1093/pcp/pcj072.CrossRefGoogle Scholar
  60. Valliyodan, B., Van Toai, T. T., Alves, J. D., & Goulart, P. D. F. P. (2014). Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). International Journal of Molecular Sciences, 15, 17622–17643.  https://doi.org/10.3390/ijms151017622.CrossRefGoogle Scholar
  61. Verdin, E., & Ott, M. (2015). 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nature Reviews Molecular Cell Biology, 16, 258–264.  https://doi.org/10.1038/nrm3931.CrossRefGoogle Scholar
  62. Voesenek, L. A., & Bailey-serres, J. (2015). Flood adaptive traits and processes: An overview. New Phytologist, 206, 57–73.  https://doi.org/10.1111/nph.13209.CrossRefGoogle Scholar
  63. Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67.  https://doi.org/10.3389/fpls.2016.00067.CrossRefGoogle Scholar
  64. Wei, A., He, C., Li, B., Li, N., & Zhang, J. (2011). The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnology Journal, 9, 216–229.  https://doi.org/10.1111/j.1467-7652.2010.00548.x.CrossRefGoogle Scholar
  65. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705–708.  https://doi.org/10.1038/nature04920.CrossRefGoogle Scholar
  66. Yukiyoshi, K., & Karahara, I. (2014). Role of ethylene signalling in the formation of constitutive aerenchyma in primary roots of rice. AoB Plants, 6, plu043.  https://doi.org/10.1093/aobpla/plu043.CrossRefGoogle Scholar
  67. Zhang, Z., Wei, L., Zou, X., Tao, Y., Liu, Z., & Zheng, Y. (2008). Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Annals of Botany, 102, 509–519.  https://doi.org/10.1093/aob/mcn129.CrossRefGoogle Scholar
  68. Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66(7), 1749–1761.  https://doi.org/10.1093/jxb/erv013.CrossRefGoogle Scholar
  69. Zhang, B., & Wang, Q. (2015). MicroRNA-based biotechnology for plant improvement. Journal of Cellular Physiology, 230, 1–15.  https://doi.org/10.1002/jcp.24685.CrossRefGoogle Scholar
  70. Zheng, X., Chen, L., Li, M., Lou, Q., Xia, H., Wang, P., Li, T., Liu, H., & Luo, L. (2013). Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One, 8(11), e80253.  https://doi.org/10.1371/journal.pone.0080253.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camila Pegoraro
    • 1
  • Carlos Busanello
    • 1
  • Luciano Carlos da Maia
    • 1
  • Antonio Costa de Oliveira
    • 1
  1. 1.Plant Genomics and Breeding Center, School of Agronomy Eliseu MacielFederal University of PelotasPelotasBrazil

Personalised recommendations